Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pac Symp Biocomput ; 28: 145-156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540972

RESUMEN

Protein subcellular localization is an important factor in normal cellular processes and disease. While many protein localization resources treat it as static, protein localization is dynamic and heavily influenced by biological context. Biological pathways are graphs that represent a specific biological context and can be inferred from large-scale data. We develop graph algorithms to predict the localization of all interactions in a biological pathway as an edge-labeling task. We compare a variety of models including graph neural networks, probabilistic graphical models, and discriminative classifiers for predicting localization annotations from curated pathway databases. We also perform a case study where we construct biological pathways and predict localizations of human fibroblasts undergoing viral infection. Pathway localization prediction is a promising approach for integrating publicly available localization data into the analysis of large-scale biological data.


Asunto(s)
Algoritmos , Biología Computacional , Humanos , Bases de Datos de Proteínas
2.
Bioinformatics ; 38(Suppl 1): i10-i18, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35758797

RESUMEN

SUMMARY: The increasing prevalence and importance of machine learning in biological research have created a need for machine learning training resources tailored towards biological researchers. However, existing resources are often inaccessible, infeasible or inappropriate for biologists because they require significant computational and mathematical knowledge, demand an unrealistic time-investment or teach skills primarily for computational researchers. We created the Machine Learning for Biologists (ML4Bio) workshop, a short, intensive workshop that empowers biological researchers to comprehend machine learning applications and pursue machine learning collaborations in their own research. The ML4Bio workshop focuses on classification and was designed around three principles: (i) emphasizing preparedness over fluency or expertise, (ii) necessitating minimal coding and mathematical background and (iii) requiring low time investment. It incorporates active learning methods and custom open-source software that allows participants to explore machine learning workflows. After multiple sessions to improve workshop design, we performed a study on three workshop sessions. Despite some confusion around identifying subtle methodological flaws in machine learning workflows, participants generally reported that the workshop met their goals, provided them with valuable skills and knowledge and greatly increased their beliefs that they could engage in research that uses machine learning. ML4Bio is an educational tool for biological researchers, and its creation and evaluation provide valuable insight into tailoring educational resources for active researchers in different domains. AVAILABILITY AND IMPLEMENTATION: Workshop materials are available at https://github.com/carpentries-incubator/ml4bio-workshop and the ml4bio software is available at https://github.com/gitter-lab/ml4bio. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Humanos , Flujo de Trabajo
3.
NPJ Syst Biol Appl ; 7(1): 12, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623016

RESUMEN

A common way to integrate and analyze large amounts of biological "omic" data is through pathway reconstruction: using condition-specific omic data to create a subnetwork of a generic background network that represents some process or cellular state. A challenge in pathway reconstruction is that adjusting pathway reconstruction algorithms' parameters produces pathways with drastically different topological properties and biological interpretations. Due to the exploratory nature of pathway reconstruction, there is no ground truth for direct evaluation, so parameter tuning methods typically used in statistics and machine learning are inapplicable. We developed the pathway parameter advising algorithm to tune pathway reconstruction algorithms to minimize biologically implausible predictions. We leverage background knowledge in pathway databases to select pathways whose high-level structure resembles that of manually curated biological pathways. At the core of this method is a graphlet decomposition metric, which measures topological similarity to curated biological pathways. In order to evaluate pathway parameter advising, we compare its performance in avoiding implausible networks and reconstructing pathways from the NetPath database with other parameter selection methods across four pathway reconstruction algorithms. We also demonstrate how pathway parameter advising can guide reconstruction of an influenza host factor network. Pathway parameter advising is method agnostic; it is applicable to any pathway reconstruction algorithm with tunable parameters.


Asunto(s)
Vías Biosintéticas/fisiología , Biología Computacional/métodos , Biología de Sistemas/métodos , Algoritmos , Animales , Vías Biosintéticas/genética , Análisis de Datos , Bases de Datos Factuales , Redes Reguladoras de Genes/genética , Humanos , Modelos Biológicos , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...