Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36236354

RESUMEN

Quartz crystal microbalances are widely used sensors with applications for the detection of very-low-mass deposition in many different fields, from contamination monitoring in the high vacuum of deep space missions to the monitoring of biological activity or pollution using specifically designed active substrates. These sensors are very stable over time; nevertheless, their sensitivity to the temperature is well known, and different implementations have been devised to correct it, e.g., through compensation with a dual crystal. This paper deals with the effects of temperature on QCM but separates the case of uniform crystal temperature from the case of in-plane temperature gradients considering a QCM based on quartz crystals with deposited film resistors used as both RTDs and heaters. This configuration allows both an accurate temperature measurement and efficient thermal control, allowing the achievement of crystals temperatures in the order of 400 °C higher than the environment with a low power dissipation of the order of 1 W. The film resistors deposited around the electrodes allow directly measuring the average crystal temperature and directly delivering power to the crystal for thermal control. The localized delivery of the heat nevertheless also determines uncommon temperature fields on the crystal, and thus, an analysis of both the effects of temperature on the new microbalance was performed. The temperature gradient has strong effects on the frequency; therefore, along with the temperature, the thermal gradients have tobe compensated. The calibration of the QCM thermometers and the assessment of the achievable measurement accuracy were performed, as well as the determination of the frequency-temperature relationship. The comparison between frequency changes in the case of uniform temperature and those observed while using crystal heaters proved that temperature gradients have a strong effect on the crystal frequency. To identify the temperature field on the crystal surface of a QCM crystal, the gold coating of the deposited films was removed to achieve an emissivity acceptable for thermal imaging with an IR camera. Moreover, image processing for emissivity correction was developed. In order to correlate the temperature gradient with the frequency variation, a test campaign was performed to measure the frequency changes derived from different power levels delivered to the crystal heaters. From this test campaign and thermal analysis, the effect of the thermal gradient was assessed.


Asunto(s)
Técnicas Biosensibles , Tecnicas de Microbalanza del Cristal de Cuarzo , Electrodos , Oro/química , Cuarzo , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos
2.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616622

RESUMEN

Quartz Crystal Microbalances (QCM) are widely used instruments thanks to their stability, low mass, and low cost. Nevertheless, the sensitivity to temperature is their main drawback and is often a driver for their design. Though the crystal average temperature is mostly considered as the only disturbance, temperature affects the QCM measurements also through the in-plane temperature gradients, an effect identified in the past but mostly neglected. Recently, it has been shown that this effect can prevail over that of the average temperature in implementations where the heat for thermal control is released directly on the crystal through deposited film heaters. In this study, the effect of temperature gradients for this kind of crystal is analyzed, the sensitivity of frequency to the average temperature gradient on the electrode border is determined, and a correction is proposed and verified. A numerical thermal model of the QCM has been created to determine the temperature gradients on the electrode borders. The frequency versus temperature-gradient function has been experimentally determined in different thermal conditions. The correction function has been eventually applied to a QCM implementing a crystal of the same manufacturing lot as the one used for the characterization. The residual errors after the implementation of the correction of both average temperature and temperature gradients were always lower than 5% of the initial temperature disturbance. Moreover, using the correlation between the heater power dissipation and the generated temperature gradients, it has been shown that an effective correction strategy can be based on the measurement of the power delivered to the crystal without the determination of the temperature gradient.

3.
Sensors (Basel) ; 20(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979137

RESUMEN

MicroMED (Micro Martian Environmental Dust Systematic Analyzer (MEDUSA)) instrument was selected for the ExoMars 2020 mission to study the airborne dust on the red planet through in situ measurements of the size distribution and concentration. This characterization has never been done before and would have a strong impact on the understanding of Martian climate and Aeolian processes on Mars. The MicroMED is an optical particle counter that exploits the measured intensity of light scattered by dust particles when crossing a collimated laser beam. The measurement technique is well established for laboratory and ground applications but in order to be mounted on the Dust Suite payload within the framework of ExoMars 2020 mission, the instrument must be compatible with harsh mechanical and thermal environments and the tight mass budget of the mission payload. This work summarizes the thermo-mechanical design of the instrument, the manufacturing of the flight model and its successful qualification in expected thermal and mechanical environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...