Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 292(35): 14576-14586, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679532

RESUMEN

Double strand breaks (DSBs) represent highly deleterious DNA damage and need to be accurately repaired. Homology-directed repair and non-homologous end joining (NHEJ) are the two major DSB repair pathways that are highly conserved from yeast to mammals. The choice between these pathways is largely based on 5' to 3' DNA resection, and NHEJ proceeds only if resection has not been initiated. In yeast, yKu70/80 rapidly localizes to the break, protecting DNA ends from nuclease accessibility, and recruits additional NHEJ factors, including Nej1 and Lif1. Cells harboring the nej1-V338A mutant exhibit NHEJ-mediated repair deficiencies and hyper-resection 0.15 kb from the DSB that was dependent on the nuclease activity of Dna2-Sgs1. The integrity of Nej1 is also important for inhibiting long-range resection, 4.8 kb from the break, and for preventing the formation of large genomic deletions at sizes >700 bp around the break. Nej1V338A localized to a DSB similarly to WT Nej1, indicating that the Nej1-Lif1 interaction becomes critical for blocking hyper-resection mainly after their recruitment to the DSB. This work highlights that Nej1 inhibits 5' DNA hyper-resection mediated by Dna2-Sgs1, a function distinct from its previously reported role in supporting Dnl4 ligase activity, and has implications for repair pathway choice and resection regulation upon DSB formation.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Eliminación de Gen , Viabilidad Microbiana , Mutación Puntual , Multimerización de Proteína , Transporte de Proteínas , RecQ Helicasas/química , RecQ Helicasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad de la Especie
2.
DNA Repair (Amst) ; 14: 9-16, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24369855

RESUMEN

Nej1 is an essential factor in the non-homologous end-joining (NHEJ) pathway and interacts with the DNA ligase complex, Lif1-Dnl4, through interactions with Lif1. We have mapped K331-V338 in the C-terminal region of Nej1 to be critical for its functionality during repair. Truncation and alanine scanning mutagenesis have been used to identify a motif in Nej1, KKRK (331-334), which is important for both nuclear targeting and NHEJ repair after localization. We have identified F335-V338 to be important for proper interaction with Lif1, however this region is not required for Nej1 recruitment to HO endonuclease-induced DNA double-strand breaks in vivo. Phenylalanine at position 335 is particularly important for the role of Nej1 in repair and the loss of association between Nej1 and Lif1 correlates with a decrease in cell survival upon either transient or continuous HO expression in nej1 mutants.


Asunto(s)
Núcleo Celular/metabolismo , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Proteínas de Unión al ADN/genética , Mutagénesis Sitio-Dirigida , Mutación , Señales de Localización Nuclear/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Biochem Cell Biol ; 91(1): 31-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23442139

RESUMEN

DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Ligasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , ADN/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Radiación Ionizante
4.
J Biol Chem ; 286(37): 32638-50, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21775435

RESUMEN

The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 ("Leu-lock") inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric ß-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.


Asunto(s)
Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Línea Celular , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
5.
J Biol Chem ; 285(2): 1414-23, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19893054

RESUMEN

DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.


Asunto(s)
Antígenos Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Antígenos Nucleares/química , Antígenos Nucleares/genética , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología
6.
Biochem J ; 417(3): 639-50, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19133841

RESUMEN

DNA DSBs (double-strand breaks) are considered the most cytotoxic type of DNA lesion. They can be introduced by external sources such as IR (ionizing radiation), by chemotherapeutic drugs such as topoisomerase poisons and by normal biological processes such as V(D)J recombination. If left unrepaired, DSBs can cause cell death. If misrepaired, DSBs may lead to chromosomal translocations and genomic instability. One of the major pathways for the repair of IR-induced DSBs in mammalian cells is NHEJ (non-homologous end-joining). The main proteins required for NHEJ in mammalian cells are the Ku heterodimer (Ku70/80 heterodimer), DNA-PKcs [the catalytic subunit of DNA-PK (DNA-dependent protein kinase)], Artemis, XRCC4 (X-ray-complementing Chinese hamster gene 4), DNA ligase IV and XLF (XRCC4-like factor; also called Cernunnos). Additional proteins, including DNA polymerases mu and lambda, PNK (polynucleotide kinase) and WRN (Werner's Syndrome helicase), may also play a role. In the present review, we will discuss our current understanding of the mechanism of NHEJ in mammalian cells and discuss the roles of DNA-PKcs and DNA-PK-mediated phosphorylation in NHEJ.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Radiación Ionizante , Animales , Daño del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Humanos , Modelos Biológicos
7.
DNA Repair (Amst) ; 7(10): 1680-92, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18644470

RESUMEN

Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an additional participant, XLF, for XRCC4-like factor (also called Cernunnos), which interacts with the XRCC4-DNA ligase IV complex and stimulates its activity in vitro, however, its precise role in the DNA damage response is not fully understood. Since the protein kinase activity of DNA-PKcs is required for NHEJ, we asked whether XLF might be a physiological target of DNA-PK. Here, we have identified two major in vitro DNA-PK phosphorylation sites in the C-terminal region of XLF, serines 245 and 251. We show that these represent the major phosphorylation sites in XLF in vivo and that serine 245 is phosphorylated in vivo by DNA-PK, while serine 251 is phosphorylated by Ataxia-Telangiectasia Mutated (ATM). However, phosphorylation of XLF did not have a significant effect on the ability of XLF to interact with DNA in vitro or its recruitment to laser-induced DSBs in vivo. Similarly, XLF in which the identified in vivo phosphorylation sites were mutated to alanine was able to complement the DSB repair defect as well as radiation sensitivity in XLF-deficient 2BN cells. We conclude that phosphorylation of XLF at these sites does not play a major role in the repair of IR-induced DSBs in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Supervivencia Celular/efectos de la radiación , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/aislamiento & purificación , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Fosforilación/efectos de la radiación , Fosfoserina/metabolismo , Unión Proteica/efectos de la radiación , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de la radiación , Radiación Ionizante , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...