Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
EJHaem ; 5(3): 440-446, 2024 Jun.
Article En | MEDLINE | ID: mdl-38895064

The phenotype of ß-thalassemia varies widely. The primary determinant is the type of beta-globin gene mutation; however, there are secondary and tertiary modifiers also as associated alpha mutations, polymorphisms, as well as coinheritance of mutations affecting other related systems. Co-inheritance of alpha thalassemia mutations is known to ameliorate the severity of HbE-ß thalassemia. However, the role of alpha globin gene alterations (deletions and triplication) is not well illustrated in homozygous ß-thalassemia. Here we evaluated the role of alpha globin gene alterations in 122 ß-thalassemia patients having IVS1-5 (G > C) homozygous mutation. ß-thalassemia mutations were detected by ARMS PCR and alpha mutations by GAP-PCR. Gene expression by qRT-PCR. Out of 122 cases, 15 patients had alpha 3.7 triplications (ααα3.7anti), 24 had alpha 3.7 kb deletion (-α3.7) mutation and three patients had 4.2 kb deletion (-α4.2). Patients were divided into two groups, requiring less than 8 units (NTDT) and more than 8 units (TDT) of blood transfusion per year (≥8U BT/year). The percentage of alpha deletion was significantly (p = 0.0042) high in NTDT (42.1%) as compared with TDT (13.2%). Conversely, the proportion of alpha triplication is high in the TDT as compared with NTDT. Even mean serum ferritin level was found to be significantly high in patients having alpha triplication as compared with those having alpha deletions (p = 0.0184) and normal alpha gene (p = 0.0003). α/ß globin ratio was highest in TDT patients with alpha triplication and lowest in NTDT patients with alpha-del. The results show that concurrent inheritance of alpha gene alterations influences the phenotypic severity of homozygous ß-thalassemia.

2.
J Biomol Struct Dyn ; 42(1): 528-549, 2024.
Article En | MEDLINE | ID: mdl-37087726

Multidrug resistance episodes in malaria increased from 3.9% to 20% from 2015 to 2019. Synchronizing the clinical manifestation in chronological sequence led to a unique impression on glucose demand (increased up to 100-fold) by the parasite-infected RBCs. Hence, restriction in the glucose uptake to parasite-infected RBCs could be an alternative approach to conquer the global burden of malaria to a greater extent. A C28 steroidal lactone Withaferin A (WS-3) isolated from Withania somnifera leave extract shows better thermodynamically stable interactions with the glucose transporters (GLUT-1 and PfHT) to standard drugs metformin and lopinavir. MD simulations for a trajectory period of 100 ns reflect stable interactions with the interactive amino acid residues such as Pro141, Gln161, Gln282, Gln283, Trp388, Phe389, and Phe40, Asn48, Phe85, His168, Gln169, Asn311 which potentiating inhibitory activity of WS-3 against GLUT-1 and PfHT respectively. WS-3 was non-hemotoxic (%hemolysis <5%) for a high concentration of up to 1 mg/ml in the physiological milieu. However, the %hemolysis significantly increased up to 30.55 ± 0.929% in a parasitophorous simulated environment (pH 5.0). Increased hemolysis of WS-3 could be due to the production of ROS in an acidic environment. Further, the inhibitory activity of WS-3 against both glucose transporters was supported with flow cytometry-based analysis of parasite-infected RBCs. Results show that WS-3 has low mean fluorescence intensities for both target proteins compared to conventional drugs, suggesting a potential sugar transporter inhibitor against GLUT-1 and PfHT for managing malaria. Communicated by Ramaswamy H. Sarma.


Malaria , Withania , Withania/chemistry , Hemolysis , Flow Cytometry , Malaria/drug therapy , Plant Extracts/pharmacology , Glucose/metabolism
...