Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 236: 113802, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382225

RESUMEN

Gene therapy is considered to be a valuable strategy for effective cancer treatment. However, the development of effective delivery systems that can specifically deliver gene materials, such as siRNA to tumor tissues plays a critical role in cancer therapy. In the present study, we have developed a novel complex that is based on an electrostatic interaction between cationic polyurethane ionene (CPUI) nanoparticles and an anti-signal transducer and activator of transcription 3 (STAT3) siRNA. For active targeting, hyaluronic acid (HA) was used to coat the complexes, which significantly reduced the cytotoxicity of the blank nanocarriers while demonstrating high transport efficiency of the siRNA via the CD44-mediated endocytosis pathway in MCF-7 breast cancer cells. The targeted nanocarriers (HA/CPUI/siRNA) showed significantly higher cellular internalization in flow cytometry and confocal microscopy compared with the non-targeted system (CPUI/siRNA). In addition, the incorporation of HA on the surface of the complexes resulted in significantly greater suppression of the STAT3 gene compared to the corresponding non-targeted formulation. Whole-body fluorescence images showed more significant tumor accumulation of the targeted nanocarriers in 4T1 breast tumor-bearing mice. Therefore, HA/CPUI/siRNA nanocarriers are an interesting option for the siRNA-targeted treatment of breast cancer cells.


Asunto(s)
Ácido Hialurónico , Nanopartículas , Animales , Ratones , Línea Celular Tumoral , Poliuretanos , Terapia Genética , ARN Interferente Pequeño/genética
2.
Biomater Adv ; 158: 213771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271801

RESUMEN

The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent. The research focused on the impact of gold nanoparticles present in targeted TMT-micelles core on stability and in vivo bioavailability and sonotoxicity of the nanoparticles, as well as their synergistic effect on targeted chemotherapy. The nanomicelles prepared in this study demonstrated excellent biocompatibility and responsiveness to stimuli. PCL-SS-MPC nanomicelles displayed drug release in response to GSH and pH, resulting in high DOX release at GSH 10 mM and pH 5. Our findings, supported by MTT, flow cytometry, and confocal laser scanning microscopy, demonstrated that AuS-PM-TMTM-DOX micelles effectively induced apoptosis and enhanced cellular uptake in MCF7 and MDA-MB231 cell lines. The cytotoxic effects of AuS-PM-DOX/US on cancer cells were approximately 38 % higher compared to AuS-PM-DOX samples at a concentration of IC50 0.68 nM. This increase in cellular toxicity was primarily attributed to the promotion of apoptosis. The introduction of disulfide linkages in AuSNPs resulted in increased ROS production when exposed to ultrasound stimulation, due to a reduction in GSH levels. Compared to other commercially available nanosensitizers such as titanium dioxide, exposure of AuS-PM to ultrasound radiation (1.0 W/cm, 2 min) significantly enhanced cavitation effects and resulted in 3 to 5 times higher ROS production. Furthermore, laboratory experiments using human breast cancer cells (MDA-MB-231, MCF7) demonstrated that the toxicity of AuS-PM in response to ultrasound waves is dose-dependent. The findings of this study suggest that this formulated nanocarrier holds great potential as a viable treatment option for breast cancer. It can induce apoptosis in cancer cells, reduce tumor size, and display notable therapeutic efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Micelas , Neoplasias de la Mama/tratamiento farmacológico , Oro , Especies Reactivas de Oxígeno , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antineoplásicos/farmacología , Polímeros , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Disulfuros
3.
Int J Pharm ; 645: 123356, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37661033

RESUMEN

Drug delivery strategies aim to maximize a drug's therapeutic efficiency by increasing the drug's concentration at the target site while minimizing delivery to off-target tissues. There is a great deal of interest in using magnetic nanoparticles in combination with applied magnetic fields to selectively control drug accumulation and release in target tissue while minimizing effects on other tissues. In this study, a magnetic targeted drug delivery system based on waterborne polyurethane nanomicelles was prepared by encapsulating hydrophobic doxorubicin (DOX, model drug) and hydrophobic oleic acid-superparamagnetic nanoparticles (SPION-OA) into the hydrophobic core of waterborne polyurethane micelles (CPUM) using the solvent evaporation method. The prepared drug-loaded magnetomicelles (CPUM-DOX-SPION) had a spherical shape with an average diameter of 158 nm. The magnetomicelles showed superparamagnetic properties with excellent magnetic resonance imaging (MRI) contrast effects and T2 relaxation in vitro. In the absence and presence of a magnetic field, the cytocompatibility and cellular uptake of the samples were assessed by MTT assay and flow cytometry, respectively, and the cells were imaged with a confocal microscope. Application of the magnetic field increased cellular cytotoxicity and cellular uptake in association with improved DOX delivery. In addition, the in vivo study of tumor volume showed that tumor growth of the mice group treated with CPUM-DOX-SPION in the presence of an external magnetic field was significantly retarded, with no apparent loss of body weight, compared with the same magnetomicelles in the absence of the magnetic field and with free DOX at the same dose. Moreover, the in vivo MRI experiment indicated the potential of these magnetomicelles as a probe in MRI diagnosis for tumor targeting, and the results showed that magnetically guided delivery of CPUM-SPION magnetomicelles into tumors could significantly improve the targeting efficacy. All the results suggest that the prepared novel magnetomicelles will be promising theranostic systems for effective magnetically guided delivery of chemotherapeutic agents and image-guided personalized medicine.

4.
Int J Pharm ; 635: 122768, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841369

RESUMEN

New strategies for constructing versatile nanocarriers are needed for cancer therapy to overcome the multiple challenges of targeted delivery. This work explores the advantages of polyurethane with main-chain quaternary ammonium salt moieties (ionene) as a novel carrier for targeted drug delivery. We have developed a novel cationic soybean oil-based polyurethane ionene nanocarrier (CPUI) that can act as an effective anticancer agent and efficiently deliver the anticancer drug 5-fluorouracil (5FU). We also report a potential anticancer drug delivery system targeting the folate receptor. In vitro experiments with blank CPUI carriers on the 4T1 (mouse breast cancer cell line) and the NIH-3T3 (mouse fibroblast cell line) revealed high cytotoxicity for the cancer cells but only low cytotoxicity for the normal fibroblast cells. The CPUI nanoparticles were readily loaded with 5FU (5FU-CPUI) in water using electrostatic interactions between the cationic quaternary ammonium groups of ionene and the anionic 5FU. The in vivo study in mice with tumors showed that the blank CPUI carriers significantly inhibited tumor growth, even more than the free drug (5FU). The inhibitory effect on tumor growth was slightly enhanced when the carriers were loaded with 5FU. The prepared nanoparticles had a high loading capacity of 41.8 %. Further enhancement of the inhibitory effect was observed when folic acid (FA) was added as a targeting moiety to the system via ion exchange with the bromine counterion of the quaternary ammonium moieties. The results suggest that the efficacy of FA-CPUI-5FU nanoparticles as vehicles for drug delivery can be enhanced via folate receptor (FR) mediated endocytosis in 4T1 cells and these novel nanocarriers may provide a potential platform for effective targeted drug delivery to tumor tissue and breast cancer therapy in the clinic.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Ratones , Portadores de Fármacos , Poliuretanos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/farmacología , Fluorouracilo , Ácido Fólico
5.
Int J Pharm ; 628: 122275, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36265661

RESUMEN

Nanocarriers of different origins that respond to stimuli have been synthesized and used in various biomedical applications, such as intracellular drug delivery. To develop highly efficient nanocarriers, novel clickable and cleavable soybean oil-based polyurethane nanomicelles (CPUM), and polyurethane-hyaluronic acid nanomicelles (CPUM-HA) were prepared. The prepared nanocarriers exhibited controlling self-assembly properties, stimuli-responsiveness, good cytocompatibility, and high loading capacity for doxorubicin (DOX). The addition of the reducing agent glutathione (GSH) to the drug release medium resulted in GSH-triggered species size change (aggregation of nanomicelles) and enhanced release of DOX, leading to higher cytotoxicity in tumors. MTT, confocal laser scanning microscopy (CLSM), and flow cytometry results showed that the CPUM-HA-DOX nanocarriers exhibited increased cytotoxicity and cellular uptake compared to the CPUM-DOX nanocarriers. The in vivo and ex vivo results suggested that the CPUM-HA nanomicelles could provide a potential platform for effective targeted delivery of cytotoxic drug molecules to the tumor tissue and breast cancer therapy in the clinic.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Poliuretanos , Doxorrubicina , Liberación de Fármacos , Micelas , Oxidación-Reducción , Sistemas de Liberación de Medicamentos , Glutatión/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos
6.
Iran J Pharm Res ; 21(1): e127035, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36060919

RESUMEN

The main purpose of the present study was to fabricate mucoadhesive bio-nanocomposite hydrogels to prolong the drug retention time in the stomach. In these bio-nanocomposite hydrogels, chitosan (CH) was used as a bioadhesive matrix, montmorillonite (MMT) was applied to modulate the release rate, and tripolyphosphate (TPP) was the cross-linking agent. The test samples were analyzed via different methods such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Drug incorporation efficacy and mucoadhesive strength of these nanocomposite hydrogel beads were studied. Swelling and in vitro drug release behaviors of these bio-nanocomposite hydrogels were evaluated in simulated gastric fluid (SGF; pH 1.2). The optimized MMT-famotidine (FMT)/CH bio-nanocomposite hydrogels displayed a controllable and sustainable drug release profile with suitable mucoadhesion and prolonged retention time in the stomach. Thus, the results demonstrated that the fabricated mucoadhesive bio-nanocomposite hydrogels could remarkably increase the therapeutic efficacy and bioavailability of FMT by the oral route.

7.
ACS Omega ; 7(32): 28421-28433, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990496

RESUMEN

Saponins are plant glycosides with different structures and biological activities, such as anticancer effects. Ziziphus spina-christi is a plant rich in saponin, and this compound is used to treat malignant melanoma in the present study. Nanophytosomes can be used as an advantageous nanodrug delivery system for plant extracts. The aim of this work is to use the saponin-rich fraction (SRF) from Z. spina-christi and prepare SRF-loaded nanophytosomes (saponinosomes) and observe the in vitro and in vivo effects of these carriers. First, the SRF was obtained from Z. spina-christi by a solvent-solvent fractionation method. Then, Fourier transform infrared (FTIR) analyses were performed to confirm the presence of saponins in the extracted material. Subsequently, the saponinosomes were prepared by the solvent injection method (ether injection method) using a 1:1:1 ratio of lecithin/cholesterol/SRF in the mixture. Characterization of the prepared saponinosomes was performed by FTIR, dynamic light scattering (DLS), field-emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) analyses. In addition, a UV-vis spectrophotometer was used to determine the entrapment efficiency (EE) and in vitro release of the SRF. Finally, cell cytotoxicity of the different formulations was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay on both mouse melanoma cells (B16F10) and fibroblasts (L929). Using DLS, AFM, and FE-SEM analyses, the particle size was determined to be 58 ± 6 nm with a zeta potential of -32 ± 2 mV. The calculated EE was 85 ± 3%. The results of the in vitro release profile showed that 68.2% of the SRF was released from the saponinosome after 48 h. The results of the MTT assay showed that the SRF and saponinosomes have high toxicity on B16F10 melanoma cells, but saponinosomes showed a significant decrease in cytotoxicity on L929 fibroblast cells compared with that of the SRF. Our results indicate that the SRF from Z. spina-christi has anticancer activity, and the saponinosomes prepared in this work can control tumor growth, improve therapeutic efficacy, and reduce the side effects of saponins.

8.
Mater Today Bio ; 16: 100349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35875198

RESUMEN

Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20% (neutral buffer) reduction in comparison with the non-coated group (Epi-Nio). The cytotoxicity and apoptosis results of 4T1 and SkBr3 cells showed an approximately 2-fold increase in the Epi-Nio-HA system over Epi-Nio and free epirubicin, which confirms the superiority of the engineered nanocarriers. Moreover, real-time PCR data demonstrated the down-regulation of the MMP-2, MMP-9, cyclin D, and cyclin E genes expression while caspase-3 and caspase-9 gene expression were up-regulated. Confocal microscopy and flow cytometry studies uncovered the cellular uptake mechanism of the Epi-Nio-HA system, which was CD44-mediated. Furthermore, in vivo studies indicated Epi-Nio-HA decreased mice breast tumor volume by 28% (compared to epirubicin) without side effects on the liver and kidney. Conclusively, our results indicated that the HA-functionalized niosomes provide a promising nanoplatform for efficient and targeted delivery of epirubicin to potentially treat breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...