Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Environ Sci Pollut Res Int ; 31(21): 31343-31354, 2024 May.
Article En | MEDLINE | ID: mdl-38632194

In this study, three different univariate municipal solid waste (MSW) disposal rate forecast models (SARIMA, Holt-Winters, Prophet) were examined using different testing periods in four North American cities with different socioeconomic conditions. A review of the literature suggests that the selected models are able to handle seasonality in a time series; however, their ability to handle outliers is not well understood. The Prophet model generally outperformed the Holt-Winters model and the SARIMA model. The MAPE and R2 of the Prophet model during pre-COVID-19 were 4.3-22.2% and 0.71-0.93, respectively. All three models showed satisfactory predictive results, especially during the pre-COVID-19 testing period. COVID-19 lockdowns and the associated regulatory measures appear to have affected MSW disposal behaviors, and all the univariate models failed to fully capture the abrupt changes in waste disposal behaviors. Modeling errors were largely attributed to data noise in seasonality and the unprecedented event of COVID-19 lockdowns. Overall, the modeling errors of the Prophet model were evenly distributed, with minimum modeling biases. The Prophet model also appeared to be versatile and successfully captured MSW disposal rates from 3000 to 39,000 tons/month. The study highlights the potential benefits of the use of univariate models in waste forecast.


COVID-19 , Cities , Refuse Disposal , COVID-19/epidemiology , North America , Solid Waste , Humans , Models, Theoretical , SARS-CoV-2
2.
Waste Manag ; 181: 68-78, 2024 May 30.
Article En | MEDLINE | ID: mdl-38593732

Electronic waste recycling companies have proliferated in many countries due to valuable materials present in end-of-life electronic and electrical equipment. This article examined the business characteristics and management performance of Electronic Products Recycling Association (EPRA), a Canadian nationwide electronic product stewardship organization. The organization's annual performance reports, from 2012 to 2020, for nine Canadian provinces in which it currently operates were aggregated and analyzed. Temporal analysis using regression and Mann-Kendall tests were employed, and five characteristics of EPRA's business were analyzed, including e-waste products collected, number of drop-off locations, efforts to build public awareness, operating expenses, and growth of e-waste stewardship. Results show a decline in the amount of e-waste collected across the provinces, except in New Brunswick, which started its program in 2017. The Mann-Kendall test revealed declining temporal trends in most provinces. Although the collection/drop off sites and stewardship organizations increased astronomically over the study period in Canada, the amounts of e-waste collected decreased. We found that public awareness generally did not increase the amount of e-waste collected, and these campaigns only appeared to be effective in jurisdictions with good accessibility of e-waste recycling. Processing cost accounted for the majority of the e-waste management budget in Canada, and different factors affected the financial success of the stewards differently.


Electronic Waste , Recycling , Waste Management , Recycling/methods , Canada , Waste Management/methods
3.
Environ Sci Pollut Res Int ; 31(16): 24480-24491, 2024 Apr.
Article En | MEDLINE | ID: mdl-38441741

Literature review suggests that studies on biomedical waste generation and disposal behaviors in North America are limited. Given the infectious nature of the materials, effective biomedical waste management is vital to the public health and safety of the residents. This study explicitly examines seasonal variations of treated biomedical waste (TBMW) disposal rates in the City of Regina, Canada, from 2013 to 2022. Immediately before the onset of COVID-19, the City exhibited a steady pattern of TBMW disposal rate at about 6.6 kg∙capita-1∙year-1. However, the COVID-19 pandemic and its associated lockdowns brought about an abrupt and persistent decline in TBMW disposal rates. Inconsistent fluctuations in both magnitude and variability of the monthly TBMW load weights were also observed. The TBMW load weight became particularly variable in 2020, with an interquartile range 4 times higher than 2019. The average TBMW load weight was also the lowest (5.1 tonnes∙month-1∙truckload-1) in 2020, possibly due to an overall decline in non-COVID-19 medical emergencies, cancellation of elective surgeries, and availability of telehealth options to residents. In general, the TBMW disposal rates peaked during the summer and fall seasons. The day-to-day TBMW disposal contribution patterns between the pre-pandemic and post-pandemic are similar, with 97.5% of total TBMW being disposed of on fixed days. Results from this Canadian case study indicate that there were observable temporal changes in TBMW disposal behaviors during and after the COVID-19 lockdowns.


COVID-19 , Medical Waste Disposal , Medical Waste , Refuse Disposal , Waste Management , Humans , Pandemics , Canada/epidemiology , Communicable Disease Control , Refuse Disposal/methods , Medical Waste Disposal/methods
4.
Environ Sci Pollut Res Int ; 30(40): 93295-93306, 2023 Aug.
Article En | MEDLINE | ID: mdl-37505388

This study examines urban plastic waste generation using a citizen science approach in six Latin American countries during a global pandemic. The objectives are to quantify generation rates of masks, gloves, face shields, and plastic bags in urban households using online survey and perform a systematic cross-jurisdiction comparisons in these Latin American countries. The per capita total mask generation rates ranged from 0.179 to 0.915 mask cap-1 day-1. A negative correlation between the use of gloves and masks is observed. Using the average values, the approximate proportion of masks, gloves, shields, and single-use plastic bags was 34:5:1:84. We found that most studies overestimated face mask disposal rate in Latin America due to the simplifying assumptions on the number of masks discarded per person, masking prevalence rate, and average mask weight. Unlike other studies, end-of-life PPE quantities were directly counted and reported by the survey participants. Both of the conventional weight-based estimates and the proposed participatory survey are recommended in quantifying COVID waste. Participant' perception based on the Likert scale is generally consistent with the waste amount generated. Waste policy and regulation appear to be important in daily waste generation rate. The results highlight the importance of using measured data in waste estimates.


COVID-19 , Humans , Latin America , Death , Head , Plastics
5.
Sustain Cities Soc ; 96: 104685, 2023 Sep.
Article En | MEDLINE | ID: mdl-37274541

There is currently a lack of studies on residential waste collection during COVID-19 in North America. SARIMA models were developed to predict residential waste collection rates (RWCR) across four North American jurisdictions before and during the pandemic. Unlike waste disposal rates, RWCR is relatively less sensitive to the changes in COVID-19 regulatory policies and administrative measures, making RWCR more appropriate for cross-jurisdictional comparisons. It is hypothesized that the use of RWCR in forecasting models will help us to better understand the residential waste generation behaviors in North America. Both SARIMA models performed satisfactorily in predicting Regina's RWCR. The SARIMA DCV model's performance is noticeably better during COVID-19, with a 15.7% lower RMSE than that of the benchmark model (SARIMA BCV). The skewness of overprediction ratios was noticeably different between jurisdictions, and modeling errors were generally lower in less populated cities. Conflicting behavioral changes might have altered the residential waste generation characteristics and recycling behaviors differently across the jurisdictions. Overall, SARIMA DCV performed better in the Canadian jurisdiction than in U.S. jurisdictions, likely due to the model's bias on a less variable input dataset. The use of RWCR in forecasting models helps us to better understand the residential waste generation behaviors in North America and better prepare us for a future global pandemic.

...