Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 902652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928809

RESUMEN

Background: The pathogenesis of chronic spontaneous urticaria (CSU) has not been clarified entirely. Type IIb autoimmune chronic spontaneous urticaria (CSUaiTIIb) is a distinct subtype of CSU that is often difficult to treat and is connected to low levels of total IgE. Previous findings indicate that an enhanced signal transducer and activator of transcription 3 (STAT3) may be responsible for reduced IgE serum levels. Objective: Our aim was to investigate a possible underlying gain-of-function mutation or activating polymorphism in STAT3 that could be responsible for the low levels of IgE in patients with CSUaiTIIb. Methods: We included 10 patients with CSUaiTIIb and low levels of IgE and sequenced selected single nucleotide polymorphisms (SNP) in STAT3 associated with common autoimmune diseases. Exon sequencing was performed for the most relevant exons of STAT3. To test for a gain-of-function of STAT3, we performed a phospho-specific flow cytometry analysis of STAT3 in peripheral blood mononuclear cells before and after stimulation with interleukin-6. Results: No differences were found in the prevalence of the tested SNPs between our patients and a control population. Moreover, we could not find any mutations or variants on the tested exons of STAT3. The function of STAT3 was also not altered in our patients. Conclusion: In total, we could not find any evidence for our hypothesis that low IgE in patients with CSUaiTIIb is linked to mutations in STAT3 or altered activity of STAT3. Thus, it remains to be discovered what causes the low serum levels of IgE in patients with CSUaiTIIb.


Asunto(s)
Urticaria Crónica , Inmunoglobulina E , Factor de Transcripción STAT3 , Urticaria Crónica/sangre , Urticaria Crónica/genética , Mutación con Ganancia de Función , Humanos , Inmunoglobulina E/sangre , Leucocitos Mononucleares , Factor de Transcripción STAT3/sangre , Factor de Transcripción STAT3/genética
2.
Clin Transl Allergy ; 11(5): e12045, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34322217

RESUMEN

BACKGROUND: The pathogenesis of contact dermatitis, a common inflammatory skin disease with limited treatment options, is held to be driven by inflammasome activation induced by allergens and irritants. We here aim to identify inflammasome-targeting treatment strategies for irritant contact dermatitis. METHODS: A high content screen with 41,184 small molecules was performed using fluorescent Apoptosis associated speck-like protein containing a CARD (ASC) speck formation as a readout for inflammasome activation. Hit compounds were validated for inhibition of interleukin (IL)-1ß secretion. Of these, the approved thiuramdisulfide derivative disulfiram was selected and tested in a patch test model of irritant contact dermatitis in 25 healthy volunteers. Topical application of disulfiram, mometasone or vehicle was followed by application of sodiumdodecylsulfate (SDS) for 24 h each. Eczema induction was quantified by mexameter and laser speckle imaging. Corneocyte sampling of lesional skin was performed to assess inflammasome-mediated cytokines IL-1ß and IL-18. RESULTS: Disulfiram induced a dose-dependent inhibition of ASC speck formation and IL-1ß release in cellular assays in vitro. In vivo, treatment with disulfiram, but not with vehicle and less mometasone, inhibited SDS-induced eczema. This was demonstrated by significantly lower erythema and total perfusion values assessed by mexameter and laser speckle imaging for disulfiram compared to vehicle (p < 0.001) and/or mometasone (p < 0.001). Also, corneocyte IL-18 levels were significantly reduced after application of disulfiram compared to vehicle (p < 0.001). CONCLUSION: We show that disulfiram is a dose-dependent inhibitor of inflammasome pathway activation in vitro and inhibitor of SDS-induced eczema in vivo. Topical application of disulfiram represents a potential treatment option for irritant contact dermatitis.

3.
Nat Commun ; 11(1): 179, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924766

RESUMEN

Hereditary autoinflammatory diseases are caused by gene mutations of the innate immune pathway, e.g. nucleotide receptor protein 3 (NLRP3). Here, we report a four-generation family with cold-induced urticarial rash, arthralgia, chills, headache and malaise associated with an autosomal-dominant inheritance. Genetic studies identify a substitution mutation in gene F12 (T859A, resulting in p.W268R) which encodes coagulation factor XII (FXII). Functional analysis reveals enhanced autocatalytic cleavage of the mutated protein and spontaneous FXII activation in patient plasma and in supernatant of transfected HEK293 cells expressing recombinant W268R-mutated proteins. Furthermore, we observe reduced plasma prekallikrein, cleaved high molecular weight kininogen and elevated plasma bradykinin. Neutrophils are identified as a local source of FXII. Interleukin-1ß (IL-1ß) is upregulated in lesional skin and mononuclear donor cells exposed to recombinant mutant proteins. Treatment with icatibant (bradykinin-B2-antagonist) or anakinra (interleukin-1-antagonist) reduces disease activity in patients. In conclusion, our findings provide a link between contact system activation and cytokine-mediated inflammation.


Asunto(s)
Frío/efectos adversos , Factor XII/metabolismo , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Adulto , Coagulación Sanguínea , Bradiquinina/análogos & derivados , Bradiquinina/sangre , Bradiquinina/uso terapéutico , Factor XII/genética , Femenino , Células HEK293 , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Humanos , Mediadores de Inflamación , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1beta/metabolismo , Quininógeno de Alto Peso Molecular/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neutrófilos , Linaje , Fenotipo , Calicreína Plasmática/metabolismo , Proteínas Recombinantes , Piel/patología
4.
J Biol Chem ; 295(2): 363-374, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31771982

RESUMEN

Coagulation factor XII (FXII) drives production of the inflammatory peptide bradykinin. Pathological mutations in the F12 gene, which encodes FXII, provoke acute tissue swelling in hereditary angioedema (HAE). Interestingly, a recently identified F12 mutation, causing a W268R substitution, is not associated with HAE. Instead, FXII-W268R carriers experience cold-inducible urticarial rash, arthralgia, fever, and fatigue. Here, we aimed to investigate the molecular characteristics of the FXII-W268R variant. We expressed wild type FXII (FXII-WT), FXII-W268R, and FXII-T309R (which causes HAE), as well as other FXII variants in HEK293 freestyle cells. Using chromogenic substrate assays, immunoblotting, and ELISA, we analyzed expression media, cell lysates, and purified proteins for FXII activation. Recombinant FXII-W268R forms increased amounts of intracellular cleavage products that are also present in expression medium and display enzymatic activity. The active site-incapacitated variant FXII-W268R/S544A reveals that intracellular fragmentation is largely dependent on autoactivation. Purified FXII-W268R is highly sensitive to activation by plasma kallikrein and plasmin, compared with FXII-WT or FXII-T309R. Furthermore, binding studies indicated that the FXII-W268R variant leads to the exposure of a plasminogen-binding site that is cryptic in FXII-WT. In plasma, recombinant FXII-W268R spontaneously triggers high-molecular-weight kininogen cleavage. Our findings suggest that the W268R substitution influences FXII protein conformation and exposure of the activation loop, which is concealed in FXII-WT. This results in intracellular autoactivation and constitutive low-grade secretion of activated FXII. These findings help to explain the chronically increased contact activation in carriers of the FXII-W268R variant.


Asunto(s)
Factor XII/genética , Mutación Puntual , Sustitución de Aminoácidos , Dominio Catalítico , Activación Enzimática , Factor XII/química , Factor XII/metabolismo , Células HEK293 , Humanos , Kringles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA