Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Front Bioeng Biotechnol ; 12: 1294238, 2024.
Article En | MEDLINE | ID: mdl-38449676

Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.

2.
Bioelectrochemistry ; 154: 108538, 2023 Dec.
Article En | MEDLINE | ID: mdl-37549554

Fast bacterial detection and identification is a crucial challenge in order to improve our antibiotics use and reduce the antimicrobial resistance. Electroanalysis of biological fluids is cheap and can be done in situ but the electrode material needs to be perfectly chosen. We previously studied electrochemical signature of Pseudomonas aeruginosa's secretome, thanks to glassy carbon electrode. Some conductive polymers are particularly efficient for biological use because of their antifouling properties, biocompatibility and way of processing. In this paper, we described the fabrication, characterization and utilisation of PEDOT:PSS film to detect and identify Pseudomonas aeruginosa through three of its secreted molecules: pyocyanin, Pseudomonas quinolone PQS and 2'-aminoacetophenone. The electrochemical responses, clearly amplified by PEDOT:PSS, can be used to identify these bacteria quickly and efficiently.


Polymers , Pseudomonas aeruginosa , Polymers/chemistry , Electrodes , Oxidation-Reduction , Bacteria
3.
Mikrochim Acta ; 190(5): 177, 2023 04 06.
Article En | MEDLINE | ID: mdl-37022500

According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.


Blood Glucose , Diabetes Mellitus , Humans , Blood Glucose Self-Monitoring , Diabetes Mellitus/diagnosis , Glucose
4.
Carbohydr Polym ; 301(Pt B): 120345, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36446494

Conformable biocompatible conductive materials are increasingly sought for the development of bioelectronics. If additionally resorbable, they could serve for the design of transient implantable electronic devices, opening the way to new healthcare applications. Hyaluronan (HA) derivatives including sulfate and aminophenylboronic acid (PBA) groups (HAS-PBA) were therefore designed to serve as dopants of poly(3,4-ethylenedioxy)thiophene (PEDOT). The optimized HA sulfation protocol allowed good control on polymer sulfation degree while minimizing polymer chain degradation. Sulfated HA was shown to be degradable in physiological conditions. A synergy was observed between the sulfate negative charges and the PBA aromatic groups promoting hydrophobic interactions and π-stacking between PEDOT and HAS-PBA, to boost the material conductivity that reached 1.6 ± 0.2 S/cm in physiological conditions. Moreover the PEDOT:HAS-PBA material was not cytotoxic and could be formulated for easy processing by inkjet printing, appearing as promising candidate for the design of soft transient electronics for in vivo applications.


Hyaluronic Acid , Ink , Polymers , Sulfates , Biocompatible Materials/pharmacology , Sulfur Oxides
5.
ACS Appl Bio Mater ; 2022 Sep 26.
Article En | MEDLINE | ID: mdl-36162127

Despite decades of research on the reduction of surface fouling from biomolecules or micro-organisms, the ultimate antibiofouling surface remains undiscovered. The recent covid-19 pandemic strengthened the crucial need for such treatments. Among the numerous approaches that are able to provide surfaces with antibiofouling properties, chemical, biological, and topographical strategies have been implemented for instance in the marine, medical, or food industries. However, many of these methods have a biocidal effect and, with antibioresistance and biocide resistance a growing threat on humanity, strategies based on reducing adsorption of biomolecules and micro-organism are necessary for long-term solutions. Bioinspired strategies, combining both surface chemistry and topography, are currently at the heart of the best innovative and sustainable solutions. The synergistic effect of micro/nanostructuration, together with engineered chemical or biological functionalization is believed to contribute to the development of antibiofouling surfaces. This review aims to present approaches combining hydrophobic or hydrophilic chemistries with a specific topography to avoid biofouling in various industrial environments and healthcare facilities.

6.
Biosensors (Basel) ; 12(7)2022 Jun 24.
Article En | MEDLINE | ID: mdl-35884254

Electrochemical impedance spectroscopy (EIS) is widely accepted as an effective and non-destructive method to assess cell health during cell-culture. However, there is a lack of compact devices compatible with microfluidic integration and microscopy that could provide the real-time and non-invasive monitoring of cell-cultures using EIS. In this paper, we reported the design and characterization of a modular EIS testing system based on a patented technology. This device was fabricated using easily processable methodologies including screen-printing of the impedance electrodes and molding or micromachining of the cell culture chamber with an easy assembly procedure. Accordingly, to obtain processable, biocompatible and sterilizable electrode materials that lower the impact of interfacial impedance on TEER (Transepithelial electrical resistance) measurements, and to enable concomitant microscopy observations, we optimized the formulation of the electrode inks and the design of the EIS electrodes, respectively. First, electrode materials were based on carbon biocompatible inks enriched with IrOx particles to obtain low interfacial impedance electrodes approaching the performances of classical non-biocompatible Ag/AgCl second-species electrodes. Secondly, we proposed three original electrode designs, which were compared to classical disk electrodes that were optically compatible with microscopy. We assessed the impact of the electrode design on the response of the impedance sensor using COMSOL Multiphysics. Finally, the performance of the impedance spectroscopy devices was assessed in vitro using human airway epithelial cell cultures.


Dielectric Spectroscopy , Microfluidics , Cell Culture Techniques , Electric Impedance , Electrodes , Humans
7.
Talanta ; 229: 122275, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33838777

There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.


Biosensing Techniques , Microfluidics , Cell Culture Techniques , Hydrogen Peroxide , Lactic Acid , Nitrites
8.
Bioelectrochemistry ; 140: 107747, 2021 Aug.
Article En | MEDLINE | ID: mdl-33618190

During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.


Pseudomonas aeruginosa/metabolism , Electrochemical Techniques , Humans , Oxidation-Reduction , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/growth & development , Pyocyanine/analysis , Pyocyanine/metabolism , Quinolones/analysis , Quinolones/metabolism
9.
Anal Bioanal Chem ; 413(5): 1383-1393, 2021 Feb.
Article En | MEDLINE | ID: mdl-33404746

Nitric oxide (NO) and its by-products are important biological signals in human physiology and pathology particularly in the vascular and immune systems. Thus, in situ determination of the NO-related molecule (NOx) levels using embedded sensors is of high importance particularly in the context of cellular biocompatibility testing. However, NOx analytical reference method dedicated to the evaluation of biomaterial biocompatibility testing is lacking. Herein, we demonstrate a PAPA-NONOate-based reference method for the calibration of NOx sensors. After, the validation of this reference method and its potentialities were demonstrated for the detection of the oxidative stress-related NO secretion of vascular endothelial cells in a 3D tissue issued from 3D printing. Such NOx detection method can be an integral part of cell response to biomaterials. Graphical abstract.


Culture Media/chemistry , Nitrogen Oxides/analysis , Cell Culture Techniques/instrumentation , Endothelial Cells/chemistry , Endothelial Cells/cytology , Equipment Design , Human Umbilical Vein Endothelial Cells , Humans , Luminescent Measurements/instrumentation
10.
Biosensors (Basel) ; 9(4)2019 Oct 11.
Article En | MEDLINE | ID: mdl-31614545

This review summarizes recent advances in micro- and nanopore technologies with a focus on the functionalization of pores using a promising method named contactless electro-functionalization (CLEF). CLEF enables the localized grafting of electroactive entities onto the inner wall of a micro- or nano-sized pore in a solid-state silicon/silicon oxide membrane. A voltage or electrical current applied across the pore induces the surface functionalization by electroactive entities exclusively on the inside pore wall, which is a significant improvement over existing methods. CLEF's mechanism is based on the polarization of a sandwich-like silicon/silicon oxide membrane, creating electronic pathways between the core silicon and the electrolyte. Correlation between numerical simulations and experiments have validated this hypothesis. CLEF-induced micro- and nanopores functionalized with antibodies or oligonucleotides were successfully used for the detection and identification of cells and are promising sensitive biosensors. This technology could soon be successfully applied to planar configurations of pores, such as restrictions in microfluidic channels.


Biosensing Techniques , Silicon/chemistry , Electric Impedance , Electrochemical Techniques , Membranes, Artificial , Nanopores
11.
Anal Chem ; 91(14): 8900-8907, 2019 Jul 16.
Article En | MEDLINE | ID: mdl-31241899

Bipolar electrochemistry (BPE) is a powerful method based on the wireless polarization of a conductive object that induces the asymmetric electroactivity at its two extremities. A key physical limitation of BPE is the size of the conductive object because the shorter the object, the larger is the potential necessary for sufficient polarization. Micrometric and nanometric objects are thus extremely difficult to address by BPE due to the very high potentials required, in the order of tens of kV or more. Herein, the synergetic actions of BPE and of planar micropores integrated in a microfluidic device lead to the spatial confinement of the potential drop at the level of the solid-state micropore, and thus to a locally enhanced polarization of a bipolar electrode. Electrochemiluminescence (ECL) is emitted in half of the electroactive micropore and reveals the asymmetric polarization in this spatial restriction. Micrometric deoxidized silicon electrodes located in the micropore are polarized at a very low potential (7 V), which is more than 2 orders of magnitude lower compared to the classic bipolar configurations. This behavior is intrinsically associated with the unique properties of the micropores, where the sharp potential drop is focused. The presented approach offers exciting perspectives for BPE of micro/nano-objects, such as dynamic BPE with objects passing through the pores or wireless ECL-emitting micropores.

12.
Chem Sci ; 10(16): 4469-4475, 2019 Apr 28.
Article En | MEDLINE | ID: mdl-31057774

Hydrogen production through direct sunlight-driven water splitting in photo-electrochemical cells (PECs) is a promising solution for energy sourcing. PECs need to fulfill three criteria: sustainability, cost-effectiveness and stability. Here we report an efficient and stable photocathode platform for H2 evolution based on Earth-abundant elements. A p-type silicon surface was protected by atomic layer deposition (ALD) with a 15 nm TiO2 layer, on top of which a 300 nm mesoporous TiO2 layer was spin-coated. The cobalt diimine-dioxime molecular catalyst was covalently grafted onto TiO2 through phosphonate anchors and an additional 0.2 nm ALD-TiO2 layer was applied for stabilization. This assembly catalyzes water reduction into H2 in phosphate buffer (pH 7) with an onset potential of +0.47 V vs. RHE. The resulting current density is -1.3 ± 0.1 mA cm-2 at 0 V vs. RHE under AM 1.5 solar irradiation, corresponding to a turnover number of 260 per hour of operation and a turnover frequency of 0.071 s-1.

13.
Bioelectrochemistry ; 129: 79-89, 2019 Oct.
Article En | MEDLINE | ID: mdl-31125924

When implantable recording devices for brain or neural electrical activity are designed, the number of available materials for electrodes is quite limited. The material must be biocompatible with respect to ISO10993, its electrochemical properties must remain stable and the response of cells or tissues can be mitigated, especially on the glial scar. This involves electrode characterization pre- implantation and impedance spectroscopy during chronic implantation, in order to evaluate both electrode properties and performance. This study was aimed at a comparison of the long-term behavior of a nanostructured boron-doped diamond (BDD) with a nanostructured Platinum Iridium (PtIr) electrode. Firstly, a batch of cortical grids with bare and modified contacts (2 mm in diameter) was engineered for implantation. Secondly a miniature swine model was developed. This study highlighted the predominant role of electrode surface roughness on the quality of recordings. Rough PtIr contacts and BDD coated ones showed comparable behavior after three-month implantation with a slight increase of the modulus of the impedance and a tissue capsule. Nevertheless, immunohistochemistry analysis did not exhibit either a toxic or irritation reaction. With regard to biocompatibility, promising long term results are shown for both materials.


Biocompatible Materials/chemistry , Boron/chemistry , Diamond/chemistry , Electrodes, Implanted , Nanostructures/chemistry , Animals , Biocompatible Materials/adverse effects , Boron/adverse effects , Brain/ultrastructure , Diamond/adverse effects , Dielectric Spectroscopy , Electrochemical Techniques , Electrodes, Implanted/adverse effects , Glial Fibrillary Acidic Protein/analysis , Nanostructures/adverse effects , Nanostructures/ultrastructure , Swine , Swine, Miniature
14.
Trends Biotechnol ; 36(1): 45-59, 2018 01.
Article En | MEDLINE | ID: mdl-29196057

In this review we focus on demonstrating how organic electronic materials can solve key problems in biosensing thanks to their unique material properties and implementation in innovative device configurations. We highlight specific examples where these materials solve multiple issues related to complex sensing environments, and we benchmark these examples by comparing them to state-of-the-art commercially available sensing using alternative technologies. We have categorized our examples by sample type, focusing on sensing from body fluids in vitro and on wearable sensors, which have attracted significant interest owing to their integration with everyday life activities. We finish by describing a future trend for in vivo, implantable sensors, which aims to build on current progress from sensing in biological fluids ex vivo.


Biosensing Techniques/methods , Diagnostic Tests, Routine/methods , Electronics/methods , Metabolomics/methods , Point-of-Care Systems , Biosensing Techniques/instrumentation , Diagnostic Tests, Routine/instrumentation , Electronics/instrumentation , Humans , Metabolomics/instrumentation
15.
Anal Chem ; 89(19): 10124-10128, 2017 10 03.
Article En | MEDLINE | ID: mdl-28895397

Nucleic acid amplification testing is a very powerful method to perform efficient and early diagnostics. However, the integration of a DNA amplification reaction with its associated detection in a low-cost, portable, and autonomous device remains challenging. Addressing this challenge, the use of screen-printed electrochemical sensor is reported. To achieve the detection of the DNA amplification reaction, a real-time monitoring of the hydronium ions concentration, a byproduct of this reaction, is performed. Such measurements are done by potentiometry using polyaniline (PAni)-based working electrodes and silver/silver chloride reference electrodes. The developed potentiometric sensor is shown to enable the real-time monitoring of a loop-mediated isothermal amplification (LAMP) reaction with an initial number of DNA strands as low as 10 copies. In addition, the performance of this PAni-based sensor is compared to fluorescence measurements, and it is shown that similar results are obtained for both methods.


Aniline Compounds/chemistry , DNA/analysis , Nucleic Acid Amplification Techniques/methods , Electrochemical Techniques , Electrodes , Hydrogen-Ion Concentration , Microfluidics
16.
Article En | MEDLINE | ID: mdl-26738032

Pseudomonas aeruginosa is one of the most common bacteria responsible for nosocomial infections. To imagine new therapies, understanding virulence mechanisms and the associated communication system of the bacterium (its quorum sensing) is a target of the first importance. Electrochemistry is a promising tool for real-time in situ monitoring of electroactive species issued from P. aeruginosa communication system. This contribution deals with the electrochemical characterization of the main bacteria electroactive metabolites: Pseudomonas Quinolone Signal, pyocyanin and 2'-aminoacetophenone. These metabolites were electrochemically characterized and further detected in supernatant of P. aeruginosa PA01 strain grown in LB medium.


Bacteriological Techniques/methods , Electrochemical Techniques/methods , Pseudomonas aeruginosa , Quinolones , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Quinolones/analysis , Quinolones/metabolism , Quorum Sensing
17.
Mater Sci Eng C Mater Biol Appl ; 46: 25-31, 2015 Jan.
Article En | MEDLINE | ID: mdl-25491956

Neural interfacing still requires highly stable and biocompatible materials, in particular for in vivo applications. Indeed, most of the currently used materials are degraded and/or encapsulated by the proximal tissue leading to a loss of efficiency. Here, we considered boron doped diamond microelectrodes to address this issue and we evaluated the performances of a diamond microelectrode array. We described the microfabrication process of the device and discuss its functionalities. We characterized its electrochemical performances by cyclic voltammetry and impedance spectroscopy in saline buffer and observed the typical diamond electrode electrochemical properties, wide potential window and low background current, allowing efficient electrochemical detection. The charge storage capacitance and the modulus of the electrochemical impedance were found to remain in the same range as platinum electrodes used for standard commercial devices. Finally we observed a reduced Magnetic Resonance Imaging artifact when the device was implanted on a rat cortex, suggesting that boron doped-diamond is a very promising electrode material allowing functional imaging.


Biocompatible Materials/chemistry , Cerebral Cortex , Diamond/chemistry , Electrodes, Implanted , Magnetic Resonance Imaging/instrumentation , Neural Prostheses , Animals , Biocompatible Materials/adverse effects , Cerebral Cortex/pathology , Cerebral Cortex/surgery , Diamond/adverse effects , Male , Materials Testing , Microelectrodes , Prosthesis Implantation , Rats , Rats, Wistar
18.
Analyst ; 139(13): 3281-9, 2014 Jul 07.
Article En | MEDLINE | ID: mdl-24699623

Direct interfacing of neurons with electronic devices has been investigated for both prosthetic and neuro-computing applications. In vitro neuronal networks provide great tools not only for improving neuroprostheses but also to take advantage of their computing abilities. However, it is often difficult to organize neuronal networks according to specific cell distributions. Our aim was to develop a cell-type specific immobilization of neurons on individual electrodes to produce organized in vitro neuronal networks on multi-electrode arrays (MEAs). We demonstrate the selective capture of retinal neurons on antibody functionalized surfaces following the formation of self-assembled monolayers from protein-thiol conjugates by simple contact and protein-polypyrrole deposits by electrochemical functionalization. This neuronal selection was achieved on gold for either cone photoreceptors or retinal ganglion neurons using a PNA lectin or a Thy1 antibody, respectively. Anti-fouling of un-functionalized gold surfaces was optimized to increase the capture efficiencies. The technique was extended to electrode arrays by addressing electropolymerization of pyrrole monomers and pyrrole-protein conjugates to active electrodes. Retinal ganglion cell recording on the array further demonstrated the integrity of these neurons following their selection on polypyrrole-coated electrodes. Therefore, this protein-polypyrrole electrodeposition could provide a new approach to generate organized in vitro neuronal networks.


Nerve Net , Retinal Ganglion Cells/cytology , Tissue Array Analysis/instrumentation , Animals , Antibodies, Immobilized/chemistry , Cell Culture Techniques/instrumentation , Cells, Cultured , Cells, Immobilized/cytology , Equipment Design , Microelectrodes , Polymerization , Polymers/chemistry , Pyrroles/chemistry , Rats, Long-Evans , Sulfhydryl Compounds/chemistry
19.
Anal Bioanal Chem ; 406(4): 1163-72, 2014 Feb.
Article En | MEDLINE | ID: mdl-24026515

A synthetic redox probe structurally related to natural pyridoacridones was designed and electrochemically characterised. These heterocycles behave as DNA intercalators due to their extended planar structure that promotes stacking in between nucleic acid base pairs. Electrochemical characterization by cyclic voltammetry revealed a quasi-reversible electrochemical behaviour occurring at a mild negative potential in aqueous solution. The study of the mechanism showed that the iminoquinone redox moiety acts similarly to quinone involving a two-electron reduction coupled with proton transfer. The easily accessible potential region with respect to aqueous electro-inactive window makes the pyridoacridone ring suitable for the indirect electrochemical detection of chemically unlabelled DNA. Its usefulness as electrochemical hybridization indicator was assessed on immobilised DNA and compared to doxorubicin. The voltamperometric response of the intercalator acts as an indicator of the presence of double-stranded DNA at the electrode surface and allows the selective transduction of immobilised oligonucleotide hybridization at both macro- and microscale electrodes.


Acridines/chemistry , Biosensing Techniques/methods , DNA/chemistry , Intercalating Agents/chemistry , Phenanthrolines/chemistry , Biosensing Techniques/instrumentation , DNA/genetics , Electrochemistry , Electrodes , Nucleic Acid Hybridization
20.
Lab Chip ; 13(15): 2956-62, 2013 Aug 07.
Article En | MEDLINE | ID: mdl-23695411

Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.


Biosensing Techniques/instrumentation , DNA/analysis , Electrochemistry/instrumentation , Fiber Optic Technology/instrumentation , Nucleic Acid Hybridization , Equipment Design , Nanostructures/chemistry
...