Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 196(3): 1493-1508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37428388

RESUMEN

Gibberellic acid (GA3) is a natural hormone present in some plants used in agricultural formulations as a growth regulator. Currently, its production on an industrial scale is performed by submerged fermentation using the fungus Gibberella fujikuroi, which is associated with low yields, leaving the purification stages with high costs. An alternative is solid-state fermentation (SSF), which makes it possible to obtain higher concentrations of product using low-cost substrates, such as agroindustrial by-products. This research investigated the use of raw rice bran (RRB) and barley malt residue (BMR) as substrates for GA3 production by the fungus Gibberella fujikuroi. Through two statistical designs, the effect of moisture (50 to 70 wt.%) and medium composition (RRB content between 30 and 70 wt.% to a mass ratio between RRB and BMR) was first evaluated. Using the best conditions previously obtained, the effect of adding glucose (carbon source, between 0 and 80 g·L-1) and ammonium nitrate-NH4NO3-(nitrogen source, between 0 and 5 g·L-1) on GA3 productivity was analyzed. The best yield was obtained using 30 wt.% RRB and 70 wt.% BMR for a medium with 70 wt.% of moisture after 7 days of process. It was also found that higher concentrations of NH4NO3 favor the GA3 formation for intermediate values of glucose content (40 g·L-1). Finally, a kinetic investigation showed an increasing behavior in the GA3 production (10.1 g·kg of substrate-1 was obtained), with a peak on the seventh day and subsequent tendency to stabilization.


Asunto(s)
Fusarium , Gibberella , Giberelinas , Oryza , Fermentación , Glucosa
2.
Small ; 19(30): e2205871, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37058009

RESUMEN

Mechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields. In the present study, human neural stem cells (NSCs) are subjected to a standard differentiation protocol, in the presence or absence of nano-pulling. Under mechanical stimulation, an increase in the length of the neural processes which showed an enrichment in microtubules, endoplasmic reticulum, and mitochondria is found. A stimulation lasting up to 82 days induces a strong remodeling at the level of synapse density and a re-organization of the neuronal network, halving the time required for the maturation of neural precursors into neurons. The MNP-loaded NSCs are then transplanted into mouse spinal cord organotypic slices, demonstrating that nano-pulling stimulates the elongation of the NSC processes and modulates their orientation even in an ex vivo model. Thus, it is shown that active mechanical stimuli can guide the outgrowth of NSCs transplanted into the spinal cord tissue. The findings suggest that mechanical forces play an important role in neuronal maturation which could be applied in regenerative medicine.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratones , Animales , Humanos , Neuronas , Médula Espinal/fisiología , Diferenciación Celular/fisiología , Neurogénesis , Células Cultivadas
3.
Hum Mol Genet ; 32(8): 1380-1400, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537577

RESUMEN

A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.


Asunto(s)
Modelos Animales de Enfermedad , Neuropatías Hereditarias Sensoriales y Autónomas , Receptor trkA , Humanos , Animales , Ratones , Mutación , Receptor trkA/genética , Técnicas de Sustitución del Gen , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Genes Letales , Dolor/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Piel/metabolismo , Piel/patología , Sistema Nervioso Simpático/metabolismo , Hipohidrosis/metabolismo , Conducta Animal
6.
FASEB J ; 36(11): e22498, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37036720

RESUMEN

The binding of nerve growth factor (NGF) to the tropomyosin-related kinase A (TrkA) and p75NTR receptors activates a large variety of pathways regulating critical processes as diverse as proliferation, differentiation, membrane potential, synaptic plasticity, and pain. To ascertain the details of TrkA-p75NTR interaction and cooperation, a plethora of experiments, mostly based on receptor overexpression or downregulation, have been performed. Among the heterogeneous cellular systems used for studying NGF signaling, the PC12 pheochromocytoma-derived cell line is a widely used model. By means of CRISPR/Cas9 genome editing, we created PC12 cells lacking TrkA, p75NTR , or both. We found that TrkA-null cells become unresponsive to NGF. Conversely, the absence of p75NTR enhances the phosphorylation of TrkA and its effectors. Using a patch-clamp, we demonstrated that the individual activation of TrkA and p75NTR by NGF results in antagonizing effects on the membrane potential. These newly developed PC12 cell lines can be used to investigate the specific roles of TrkA and p75NTR in a genetically defined cellular model, thus providing a useful platform for future studies and further gene editing.


Asunto(s)
Receptor trkA , Receptores de Factor de Crecimiento Nervioso , Animales , Ratas , Sistemas CRISPR-Cas , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
7.
Brain Behav Immun ; 98: 234-244, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418501

RESUMEN

A deterioration in cognitive performance accompanies brain aging, even in the absence of neurodegenerative pathologies. However, the rate of cognitive decline can be slowed down by enhanced cognitive and sensorimotor stimulation protocols, such as environmental enrichment (EE). Understanding how EE exerts its beneficial effects on the aged brain pathophysiology can help in identifying new therapeutic targets. In this regard, the inflammatory chemokine ccl11/eotaxin-1 is a marker of aging with a strong relevance for neurodegenerative processes. Here, we demonstrate that EE in both elderly humans and aged mice decreases circulating levels of ccl11. Interfering, in mice, with the ccl11 decrease induced by EE ablated the beneficial effects on long-term memory retention, hippocampal neurogenesis, activation of local microglia and of ribosomal protein S6. On the other hand, treatment of standard-reared aged mice with an anti-ccl11 antibody resulted in EE-like improvements in spatial memory, hippocampal neurogenesis, and microglial activation. Taken together, our findings point to a decrease in circulating ccl11 concentration as a key mediator of the enhanced hippocampal function resulting from exposure to EE.


Asunto(s)
Ambiente , Hipocampo , Animales , Quimiocina CCL11 , Ratones , Neurogénesis , Memoria Espacial
8.
Front Cell Neurosci ; 14: 140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528252

RESUMEN

In humans and experimental animals, the administration of ciliary neurotrophic factor (CNTF) reduces food intake and body weight. To gain further insights into the mechanism(s) underlying its satiety effect, we: (i) evaluated the CNTF-dependent activation of the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) pathway in mouse models where neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) neurons can be identified by green fluorescent protein (GFP); and (ii) assessed whether CNTF promotes leptin signaling in hypothalamic feeding centers. Immunohistochemical experiments enabled us to establish that intraperitoneal injection of mouse recombinant CNTF activated the JAK2-STAT3 pathway in a substantial proportion of arcuate nucleus (ARC) NPY neurons (18.68% ± 0.60 in 24-h fasted mice and 25.50% ± 1.17 in fed mice) but exerted a limited effect on POMC neurons (4.15% ± 0.33 in 24-h fasted mice and 2.84% ± 0.45 in fed mice). CNTF-responsive NPY neurons resided in the ventromedial ARC, facing the median eminence (ME), and were surrounded by albumin immunoreactivity, suggesting that they are located outside the blood-brain barrier (BBB). In both normally fed and high-fat diet (HFD) obese animals, CNTF activated extracellular signal-regulated kinase signaling in ME ß1- and ß2-tanycytes, an effect that has been linked to the promotion of leptin entry into the brain. Accordingly, compared to the animals treated with leptin, mice treated with leptin/CNTF showed: (i) a significantly greater leptin content in hypothalamic protein extracts; (ii) a significant increase in phospho-STAT3 (P-STAT3)-positive neurons in the ARC and the ventromedial hypothalamic nucleus of normally fed mice; and (iii) a significantly increased number of P-STAT3-positive neurons in the ARC and dorsomedial hypothalamic nucleus of HFD obese mice. Collectively, these data suggest that exogenously administered CNTF reduces food intake by exerting a leptin-like action on distinctive NPY ARC neurons and by promoting leptin signaling in hypothalamic feeding centers.

9.
J Neurosci ; 40(26): 4997-5007, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32444384

RESUMEN

Stretch-growth has been defined as a process that extends axons via the application of mechanical forces. In the present article, we used a protocol based on magnetic nanoparticles (NPs) for labeling the entire axon tract of hippocampal neurons, and an external magnetic field gradient to generate a dragging force. We found that the application of forces below 10 pN induces growth at a rate of 0.66 ± 0.02 µm h-1 pN-1 Calcium imaging confirmed the strong increase in elongation rate, in comparison with the condition of tip-growth. Enhanced growth in stretched axons was also accompanied by endoplasmic reticulum (ER) accumulation and, accordingly, it was blocked by an inhibition of translation. Stretch-growth was also found to stimulate axonal branching, glutamatergic synaptic transmission, and neuronal excitability. Moreover, stretched axons showed increased microtubule (MT) density and MT assembly was key to sustaining stretch-growth, suggesting a possible role of tensile forces in MT translocation/assembly. Additionally, our data showed that stretched axons do not respond to BDNF signaling, suggesting interference between the two pathways. As these extremely low mechanical forces are physiologically relevant, stretch-growth could be an important endogenous mechanism of axon growth, with a potential for designing novel strategies for axonal regrowth.SIGNIFICANCE STATEMENT Axon growth involves motion, and motion is driven by forces. The growth cone (GC) itself can generate very low intracellular forces by inducing a drastic cytoskeleton remodeling, in response to signaling molecules. Here, we investigated the key role of intracellular force as an endogenous regulator of axon outgrowth, which it has been neglected for decades because of the lack of methodologies to investigate the topic. Our results indicate a critical role of force in promoting axon growth by facilitating microtubule (MT) polymerization.


Asunto(s)
Conos de Crecimiento/fisiología , Mecanotransducción Celular/fisiología , Proyección Neuronal/fisiología , Animales , Hipocampo/crecimiento & desarrollo , Magnetismo , Nanopartículas del Metal , Ratones , Ratones Endogámicos C57BL
10.
Nano Lett ; 20(5): 3633-3641, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32208704

RESUMEN

Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.


Asunto(s)
Axones , Endosomas , Grafito , Factor de Crecimiento Nervioso/fisiología , Animales , Células Cultivadas , Ratones , Regeneración Nerviosa
11.
J Neurosci ; 39(49): 9702-9715, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685654

RESUMEN

Nerve growth factor (NGF) is a key mediator of nociception, acting during the development and differentiation of dorsal root ganglion (DRG) neurons, and on adult DRG neuron sensitization to painful stimuli. NGF also has central actions in the brain, where it regulates the phenotypic maintenance of cholinergic neurons. The physiological function of NGF as a pain mediator is altered in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), caused by the 661C>T transition in the Ngf gene, resulting in the R100W missense mutation in mature NGF. Homozygous HSAN V patients present with congenital pain insensitivity, but are cognitively normal. This led us to hypothesize that the R100W mutation may differentially affect the central and peripheral actions of NGF. To test this hypothesis and provide a mechanistic basis to the HSAN V phenotype, we generated transgenic mice harboring the human 661C>T mutation in the Ngf gene and studied both males and females. We demonstrate that heterozygous NGFR100W/wt mice display impaired nociception. DRG neurons of NGFR100W/wt mice are morphologically normal, with no alteration in the different DRG subpopulations, whereas skin innervation is reduced. The NGFR100W protein has reduced capability to activate pain-specific signaling, paralleling its reduced ability to induce mechanical allodynia. Surprisingly, however, NGFR100W/wt mice, unlike heterozygous mNGF+/- mice, show no learning or memory deficits, despite a reduction in secretion and brain levels of NGF. The results exclude haploinsufficiency of NGF as a mechanistic cause for heterozygous HSAN V mice and demonstrate a specific effect of the R100W mutation on nociception.SIGNIFICANCE STATEMENT The R100W mutation in nerve growth factor (NGF) causes Hereditary Sensory and Autonomic Neuropathy type V, a rare disease characterized by impaired nociception, even in apparently clinically silent heterozygotes. For the first time, we generated and characterized heterozygous knock-in mice carrying the human R100W-mutated allele (NGFR100W/wt). Mutant mice have normal nociceptor populations, which, however, display decreased activation of pain transduction pathways. NGFR100W interferes with peripheral and central NGF bioavailability, but this does not impact on CNS function, as demonstrated by normal learning and memory, in contrast with heterozygous NGF knock-out mice. Thus, a point mutation allows neurotrophic and pronociceptive functions of NGF to be split, with interesting implications for the treatment of chronic pain.


Asunto(s)
Cognición , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/fisiopatología , Mutación/genética , Factor de Crecimiento Nervioso/genética , Nocicepción , Animales , Conducta Animal , Femenino , Ganglios Espinales/patología , Técnicas de Sustitución del Gen , Neuropatías Hereditarias Sensoriales y Autónomas/psicología , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación Missense/genética , Dimensión del Dolor , Percepción del Dolor , Desempeño Psicomotor , Ratas , Ratas Wistar , Piel/inervación
13.
Proc Natl Acad Sci U S A ; 116(43): 21563-21572, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31515449

RESUMEN

The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.


Asunto(s)
Apoptosis/fisiología , Conos de Crecimiento/fisiología , Factores de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Humanos , Ratones , Ratones Noqueados , Sistema Nervioso/metabolismo , Fenómenos Fisiológicos del Sistema Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/genética
14.
Int J Mol Sci ; 20(17)2019 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450553

RESUMEN

The correct morphofunctional shaping of the cerebral cortex requires a continuous interaction between intrinsic (genes/molecules expressed within the tissue) and extrinsic (e.g., neural activity) factors at all developmental stages. Forkhead Box G1 (FOXG1) is an evolutionarily conserved transcription factor, essential for the cerebral cortex patterning and layering. FOXG1-related disorders, including the congenital form of Rett syndrome, can be caused by deletions, intragenic mutations or duplications. These genetic alterations are associated with a complex phenotypic spectrum, spanning from intellectual disability, microcephaly, to autistic features, and epilepsy. We investigated the functional correlates of dysregulated gene expression by performing electrophysiological assays on FoxG1+/- mice. Local Field Potential (LFP) recordings on freely moving animals detected cortical hyperexcitability. On the other hand, patch-clamp recordings showed a downregulation of spontaneous glutamatergic transmission. These findings were accompanied by overactivation of Akt/S6 signaling. Furthermore, the expression of vesicular glutamate transporter 2 (vGluT2) was increased, whereas the level of the potassium/chloride cotransporter KCC2 was reduced, thus indicating a higher excitation/inhibition ratio. Our findings provide evidence that altered expression of a key gene for cortical development can result in specific alterations in neural circuit function at the macro- and micro-scale, along with dysregulated intracellular signaling and expression of proteins controlling circuit excitability.


Asunto(s)
Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transmisión Sináptica , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Epilepsia/fisiopatología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ratones , Ratones Noqueados , Fenotipo , Convulsiones , Transducción de Señal , Potenciales Sinápticos
15.
J Mol Biol ; 431(4): 873-884, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30664870

RESUMEN

Tau displacement from microtubules is the first step in the onset of tauopathies and is followed by toxic protein aggregation. However, other non-canonical functions of Tau might have a role in these pathologies. Here, we demonstrate that a small amount of Tau localizes in the nuclear compartment and accumulates in both the soluble and chromatin-bound fractions. We show that favoring Tau nuclear translocation and accumulation, by Tau overexpression or detachment from MTs, increases the expression of VGluT1, a disease-relevant gene directly involved in glutamatergic synaptic transmission. Remarkably, the P301L mutation, related to frontotemporal dementia FTDP-17, impairs this mechanism leading to a loss of function. Altogether, our results provide the demonstration of a direct physiological role of Tau on gene expression. Alterations of this mechanism may be at the basis of the onset of neurodegeneration.


Asunto(s)
Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteínas tau/genética , Línea Celular , Línea Celular Tumoral , Cromatina/genética , Expresión Génica/genética , Células HeLa , Humanos , Microtúbulos/genética , Mutación/genética , Tauopatías/genética
16.
Neuropharmacology ; 148: 305-310, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30639390

RESUMEN

The Forkhead Box G1 (FOXG1) gene encodes a transcription factor with an essential role in mammalian telencephalon development. FOXG1-related disorders, caused by deletions, intragenic mutations or duplications, are usually associated with severe intellectual disability, autistic features, and, in 87% of subjects, epileptiform manifestations. In a subset of patients with FoxG1 mutations, seizures remain intractable, prompting the need for novel therapeutic options. To address this issue, we took advantage of a haploinsufficient animal model, the FoxG1+/- mouse. In vivo electrophysiological analyses of FoxG1+/- mice detected hippocampal hyperexcitability, which turned into overt seizures upon delivery of the proconvulsant kainic acid, as confirmed by behavioral observations. These alterations were associated with decreased expression of the chloride transporter KCC2. Next, we tested whether a triheptanoin-based anaplerotic diet could have an impact on the pathological phenotype of FoxG1+/- mice. This manipulation abated altered neural activity and normalized enhanced susceptibility to proconvulsant-induced seizures, in addition to rescuing altered expression of KCC2 and increasing the levels of the GABA transporter vGAT. In conclusion, our data show that FoxG1 haploinsufficiency causes dysfunction of hippocampal circuits and increases the susceptibility to a proconvulsant insult, and that these alterations are rescued by triheptanoin dietary treatment.


Asunto(s)
Susceptibilidad a Enfermedades/dietoterapia , Factores de Transcripción Forkhead/genética , Haploinsuficiencia , Proteínas del Tejido Nervioso/genética , Convulsiones/dietoterapia , Triglicéridos/uso terapéutico , Animales , Susceptibilidad a Enfermedades/fisiopatología , Factores de Transcripción Forkhead/fisiología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ácido Kaínico , Ratones , Proteínas del Tejido Nervioso/fisiología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Convulsiones/prevención & control , Simportadores/biosíntesis , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Cotransportadores de K Cl
17.
Mol Neurobiol ; 55(12): 9267-9279, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29663284

RESUMEN

Hypothalamic proopiomelanocortin (POMC) neurons are important players in the regulation of energy homeostasis; we previously demonstrated that environmental stimulation excites arcuate nucleus circuits to undergo plastic remodeling, leading to altered ratio between excitatory and inhibitory synaptic contacts on these neurons. The widely used selective serotonin reuptake inhibitor fluoxetine (FLX) is known to affect body weight. On the other hand, FLX administration mimics the effects of environmental stimulation on synaptic plasticity in the hippocampus and cortex. The mammalian target of rapamycin (mTOR) pathway is instrumental in these phenomena. Thus, we aimed at investigating whether and how FLX affects POMC neurons activity and hypothalamic mTOR function. Adult mice expressing green fluorescent protein (GFP) under the POMC promoter were treated with FLX for 3 weeks resulting in diminished body weight. Patch clamp recordings performed on POMC neurons indicate that FLX increases their firing rate and the excitatory AMPA-mediated transmission, and reduces the inhibitory GABAergic currents at presynaptic level. Immunofluorescence studies indicate that FLX increases the ratio between excitatory and inhibitory synaptic contacts on POMC neurons. These changes are associated with an increased activity of the hypothalamic mTOR pathway. Use of the mTOR inhibitor rapamycin blunts the effects of FLX on body weight and on functional and structural plasticity of POMC neurons. Our findings indicate that FLX is able to remodel POMC neurons, and that this may be partly mediated by the mTOR signaling pathway.


Asunto(s)
Fluoxetina/farmacología , Hipotálamo/citología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal , Potenciales de Acción/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/efectos de los fármacos , Leptina/farmacología , Ratones Transgénicos , Neuronas/efectos de los fármacos , Sirolimus/farmacología
18.
Sci Rep ; 8(1): 1781, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379096

RESUMEN

Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of "brownization". In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metabolismo Energético/efectos de los fármacos , Fluoxetina/farmacología , Leptina/farmacología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Receptor trkB/metabolismo , Aumento de Peso/efectos de los fármacos
19.
Nat Commun ; 8(1): 2009, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222408

RESUMEN

High-fat diet (HFD) and metabolic diseases cause detrimental effects on hippocampal synaptic plasticity, learning, and memory through molecular mechanisms still poorly understood. Here, we demonstrate that HFD increases palmitic acid deposition in the hippocampus and induces hippocampal insulin resistance leading to FoxO3a-mediated overexpression of the palmitoyltransferase zDHHC3. The excess of palmitic acid along with higher zDHHC3 levels causes hyper-palmitoylation of AMPA glutamate receptor subunit GluA1, hindering its activity-dependent trafficking to the plasma membrane. Accordingly, AMPAR current amplitudes and, more importantly, their potentiation underlying synaptic plasticity were inhibited, as well as hippocampal-dependent memory. Hippocampus-specific silencing of Zdhhc3 and, interestingly enough, intranasal injection of the palmitoyltransferase inhibitor, 2-bromopalmitate, counteract GluA1 hyper-palmitoylation and restore synaptic plasticity and memory in HFD mice. Our data reveal a key role of FoxO3a/Zdhhc3/GluA1 axis in the HFD-dependent impairment of cognitive function and identify a novel mechanism underlying the cross talk between metabolic and cognitive disorders.


Asunto(s)
Encéfalo/fisiología , Proteína Forkhead Box O3/metabolismo , Hipocampo/fisiología , Resistencia a la Insulina , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Células Cultivadas , Cognición/fisiología , Dieta Alta en Grasa , Lipoilación , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Neuronas/fisiología , Interferencia de ARN
20.
Front Cell Neurosci ; 11: 225, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804449

RESUMEN

Hippocampal plasticity is triggered by a variety of stimuli including sensory inputs, neurotrophins and inflammation. Leptin, whose primary function is to regulate food intake and energy expenditure, has been recently shown to affect hippocampal neurogenesis and plasticity. Interestingly, mice fed a high-fat diet (HFD) exhibit impaired hippocampal function, but the underlying mechanisms are poorly understood. To address this issue, we compared leptin responsiveness of hippocampal neurons in control and HFD-fed mice by combining single-cell electrophysiology and biochemical assays. We found that leptin modulated spontaneous and evoked synaptic transmission in control, but not HFD, mice. This functional impairment was paralleled by blunted activation of STAT-3, one of the key signal transduction pathways controlled by the fully functional isoform of the leptin receptor, ObRb. In addition, SOCS-3 expression was non-responsive to leptin, indicating that modulation of negative feedback impinging on ObRb was also altered. Our results advance the understanding of leptin action on hippocampal plasticity and, more importantly, suggest that leptin resistance is a key determinant of hippocampal dysfunction associated with hypercaloric diet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...