Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Sci Adv ; 10(27): eado7576, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959306

RESUMEN

Following the apparent final case in an Ebola virus disease (EVD) outbreak, the decision to declare the outbreak over must balance societal benefits of relaxing interventions against the risk of resurgence. Estimates of the end-of-outbreak probability (the probability that no future cases will occur) provide quantitative evidence that can inform the timing of an end-of-outbreak declaration. An existing modeling approach for estimating the end-of-outbreak probability requires comprehensive contact tracing data describing who infected whom to be available, but such data are often unavailable or incomplete during outbreaks. Here, we develop a Markov chain Monte Carlo-based approach that extends the previous method and does not require contact tracing data. Considering data from two EVD outbreaks in the Democratic Republic of the Congo, we find that data describing who infected whom are not required to resolve uncertainty about when to declare an outbreak over.


Asunto(s)
Brotes de Enfermedades , Fiebre Hemorrágica Ebola , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , República Democrática del Congo/epidemiología , Humanos , Ebolavirus , Cadenas de Markov , Método de Montecarlo
2.
Phys Rev E ; 109(5-1): 054405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907461

RESUMEN

Many physical and biological systems rely on the progression of material through multiple independent stages. In viral replication, for example, virions enter a cell to undergo a complex process comprising several disparate stages before the eventual accumulation and release of replicated virions. While such systems may have some control over the internal dynamics that make up this progression, a challenge for many is to regulate behavior under what are often highly variable external environments acting as system inputs. In this work, we study a simple analog of this problem through a linear multicompartment model subject to a stochastic input in the form of a mean-reverting Ornstein-Uhlenbeck process, a type of Gaussian process. By expressing the system as a multidimensional Gaussian process, we derive several closed-form analytical results relating to the covariances and autocorrelations of the system, quantifying the smoothing effect discrete compartments afford multicompartment systems. Semianalytical results demonstrate that feedback and feedforward loops can enhance system robustness, and simulation results probe the intractable problem of the first passage time distribution, which has specific relevance to eventual cell lysis in the viral replication cycle. Finally, we demonstrate that the smoothing seen in the process is a consequence of the discreteness of the system, and does not manifest in systems with continuous transport. While we make progress through analysis of a simple linear problem, many of our insights are applicable more generally, and our work enables future analysis into multicompartment processes subject to stochastic inputs.


Asunto(s)
Modelos Biológicos , Procesos Estocásticos , Modelos Lineales , Replicación Viral , Simulación por Computador
3.
Math Biosci ; 374: 109240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906525

RESUMEN

A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the 'go-or-grow' hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells' phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.


Asunto(s)
Movimiento Celular , Matriz Extracelular , Modelos Biológicos , Fenotipo , Matriz Extracelular/fisiología , Movimiento Celular/fisiología , Humanos , Proliferación Celular/fisiología
4.
Cell ; 187(13): 3165-3186, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906093

RESUMEN

Patterned morphologies, such as segments, spirals, stripes, and spots, frequently emerge during embryogenesis through self-organized coordination between cells. Yet, complex patterns also emerge in adults, suggesting that the capacity for spontaneous self-organization is a ubiquitous property of biological tissues. We review current knowledge on the principles and mechanisms of self-organized patterning in embryonic tissues and explore how these principles and mechanisms apply to adult tissues that exhibit features of patterning. We discuss how and why spontaneous pattern generation is integral to homeostasis and healing of tissues, illustrating it with examples from regenerative biology. We examine how aberrant self-organization underlies diverse pathological states, including inflammatory skin disorders and tumors. Lastly, we posit that based on such blueprints, targeted engineering of pattern-driving molecular circuits can be leveraged for synthetic biology and the generation of organoids with intricate patterns.


Asunto(s)
Tipificación del Cuerpo , Animales , Humanos , Desarrollo Embrionario , Homeostasis , Organoides/metabolismo , Envejecimiento
5.
PLoS Biol ; 22(5): e3002636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743770

RESUMEN

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogeneous 2D field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating nonprotein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found 7 of the 12 investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation. Interestingly, inhibition of gap junctional intercellular communication (GJIC) in the ex vivo skin explant culture allowed the sequential emergence of new feather buds at specific spatial locations relative to the existing primary buds. The results suggest that GJIC may facilitate the propagation of long-distance inhibitory signals. Thus, inhibition of GJs may stimulate Turing-type periodic feather pattern formation during chick skin development, and the removal of GJ activity would enable the emergence of new feather buds if the local environment were competent and the threshold to form buds was reached. We further propose Turing-based computational simulations that can predict the sequential appearance of these ectopic buds. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.


Asunto(s)
Comunicación Celular , Plumas , Uniones Comunicantes , Animales , Uniones Comunicantes/metabolismo , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Embrión de Pollo , Conexinas/metabolismo , Conexinas/genética , Tipificación del Cuerpo/fisiología , Pollos , Piel/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
6.
Cell Syst ; 15(6): 510-525.e6, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772367

RESUMEN

Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase inhibitor (PARPi) maintenance therapy of ovarian cancer. We propose that adaptive therapy, which dynamically reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse microscopy and stepwise model selection, we calibrate and validate a differential equation mathematical model, which we leverage to test different plausible adaptive treatment schedules. Our model indicates that adjusting the dosage, rather than skipping treatments, is more effective at reducing drug use while maintaining efficacy due to a delay in cell kill and a diminishing dose-response relationship. In vivo pilot experiments confirm this conclusion. Although our focus is toxicity mitigation, reducing drug use may also delay resistance. This study enhances our understanding of PARPi treatment scheduling and illustrates the first steps in developing adaptive therapies for new treatment settings. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Animales , Resistencia a Antineoplásicos , Ratones
7.
Cancer Res ; 84(11): 1929-1941, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38569183

RESUMEN

Standard-of-care treatment regimens have long been designed for maximal cell killing, yet these strategies often fail when applied to metastatic cancers due to the emergence of drug resistance. Adaptive treatment strategies have been developed as an alternative approach, dynamically adjusting treatment to suppress the growth of treatment-resistant populations and thereby delay, or even prevent, tumor progression. Promising clinical results in prostate cancer indicate the potential to optimize adaptive treatment protocols. Here, we applied deep reinforcement learning (DRL) to guide adaptive drug scheduling and demonstrated that these treatment schedules can outperform the current adaptive protocols in a mathematical model calibrated to prostate cancer dynamics, more than doubling the time to progression. The DRL strategies were robust to patient variability, including both tumor dynamics and clinical monitoring schedules. The DRL framework could produce interpretable, adaptive strategies based on a single tumor burden threshold, replicating and informing optimal treatment strategies. The DRL framework had no knowledge of the underlying mathematical tumor model, demonstrating the capability of DRL to help develop treatment strategies in novel or complex settings. Finally, a proposed five-step pathway, which combined mechanistic modeling with the DRL framework and integrated conventional tools to improve interpretability compared with traditional "black-box" DRL models, could allow translation of this approach to the clinic. Overall, the proposed framework generated personalized treatment schedules that consistently outperformed clinical standard-of-care protocols. SIGNIFICANCE: Generation of interpretable and personalized adaptive treatment schedules using a deep reinforcement framework that interacts with a virtual patient model overcomes the limitations of standardized strategies caused by heterogeneous treatment responses.


Asunto(s)
Aprendizaje Profundo , Medicina de Precisión , Neoplasias de la Próstata , Humanos , Medicina de Precisión/métodos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Modelos Teóricos
8.
J R Soc Interface ; 21(212): 20230607, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442862

RESUMEN

When employing mechanistic models to study biological phenomena, practical parameter identifiability is important for making accurate predictions across wide ranges of unseen scenarios, as well as for understanding the underlying mechanisms. In this work, we use a profile-likelihood approach to investigate parameter identifiability for four extensions of the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) model, given experimental data from a cell invasion assay. We show that more complicated models tend to be less identifiable, with parameter estimates being more sensitive to subtle differences in experimental procedures, and that they require more data to be practically identifiable. As a result, we suggest that parameter identifiability should be considered alongside goodness-of-fit and model complexity as criteria for model selection.


Asunto(s)
Mustelidae , Animales , Funciones de Verosimilitud , Proyectos de Investigación
9.
Biophys J ; 123(7): 799-813, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38414238

RESUMEN

Interstitial fluid flow is a feature of many solid tumors. In vitro experiments have shown that such fluid flow can direct tumor cell movement upstream or downstream depending on the balance between the competing mechanisms of tensotaxis (cell migration up stress gradients) and autologous chemotaxis (downstream cell movement in response to flow-induced gradients of self-secreted chemoattractants). In this work we develop a probabilistic-continuum, two-phase model for cell migration in response to interstitial flow. We use a kinetic description for the cell velocity probability density function, and model the flow-dependent mechanical and chemical stimuli as forcing terms that bias cell migration upstream and downstream. Using velocity-space averaging, we reformulate the model as a system of continuum equations for the spatiotemporal evolution of the cell volume fraction and flux in response to forcing terms that depend on the local direction and magnitude of the mechanochemical cues. We specialize our model to describe a one-dimensional cell layer subject to fluid flow. Using a combination of numerical simulations and asymptotic analysis, we delineate the parameter regime where transitions from downstream to upstream cell migration occur. As has been observed experimentally, the model predicts downstream-oriented chemotactic migration at low cell volume fractions, and upstream-oriented tensotactic migration at larger volume fractions. We show that the locus of the critical volume fraction, at which the system transitions from downstream to upstream migration, is dominated by the ratio of the rate of chemokine secretion and advection. Our model also predicts that, because the tensotactic stimulus depends strongly on the cell volume fraction, upstream, tensotaxis-dominated migration occurs only transiently when the cells are initially seeded, and transitions to downstream, chemotaxis-dominated migration occur at later times due to the dispersive effect of cell diffusion.


Asunto(s)
Quimiotaxis , Neoplasias , Humanos , Movimiento Celular/fisiología , Difusión , Modelos Biológicos
11.
PLoS Comput Biol ; 20(2): e1011252, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38363799

RESUMEN

Tumour angiogenesis leads to the formation of blood vessels that are structurally and spatially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxygen heterogeneity, impairs a tumour's response to radiotherapy. The optimal strategy for enhancing tumour perfusion remains unclear, preventing its regular deployment in combination therapies. In this work, we first identify vascular architectural features that correlate with enhanced perfusion following radiotherapy, using in vivo imaging data from vascular tumours. Then, we present a novel computational model to determine the relationship between these architectural features and blood perfusion in silico. If perfusion is defined to be the proportion of vessels that support blood flow, we find that vascular networks with small mean diameters and large numbers of angiogenic sprouts show the largest increases in perfusion post-irradiation for both biological and synthetic tumours. We also identify cases where perfusion increases due to the pruning of hypoperfused vessels, rather than blood being rerouted. These results indicate the importance of considering network composition when determining the optimal irradiation strategy. In the future, we aim to use our findings to identify tumours that are good candidates for perfusion enhancement and to improve the efficacy of combination therapies.


Asunto(s)
Hipoxia , Neoplasias , Humanos , Perfusión , Terapia Combinada , Oxígeno , Neoplasias/radioterapia
12.
Bull Math Biol ; 86(2): 13, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170298

RESUMEN

Conditions for self-organisation via Turing's mechanism in biological systems represented by reaction-diffusion or reaction-cross-diffusion models have been extensively studied. Nonetheless, the impact of tissue stratification in such systems is under-explored, despite its ubiquity in the context of a thin epithelium overlying connective tissue, for instance the epidermis and underlying dermal mesenchyme of embryonic skin. In particular, each layer can be subject to extensively different biochemical reactions and transport processes, with chemotaxis - a special case of cross-diffusion - often present in the mesenchyme, contrasting the solely molecular transport typically found in the epidermal layer. We study Turing patterning conditions for a class of reaction-cross-diffusion systems in bilayered regions, with a thin upper layer and coupled by a linear transport law. In particular, the role of differential transport through the interface is explored together with the presence of asymmetry between the homogeneous equilibria of the two layers. A linear stability analysis is carried out around a spatially homogeneous equilibrium state in the asymptotic limit of weak and strong coupling strengths, where quantitative approximations of the bifurcation curve can be computed. Our theoretical findings, for an arbitrary number of reacting species, reveal quantitative Turing conditions, highlighting when the coupling mechanism between the layered regions can either trigger patterning or stabilize a spatially homogeneous equilibrium regardless of the independent patterning state of each layer. We support our theoretical results through direct numerical simulations, and provide an open source code to explore such systems further.


Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Difusión
13.
Bull Math Biol ; 86(2): 19, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238433

RESUMEN

Longitudinal tumour volume data from head-and-neck cancer patients show that tumours of comparable pre-treatment size and stage may respond very differently to the same radiotherapy fractionation protocol. Mathematical models are often proposed to predict treatment outcome in this context, and have the potential to guide clinical decision-making and inform personalised fractionation protocols. Hindering effective use of models in this context is the sparsity of clinical measurements juxtaposed with the model complexity required to produce the full range of possible patient responses. In this work, we present a compartment model of tumour volume and tumour composition, which, despite relative simplicity, is capable of producing a wide range of patient responses. We then develop novel statistical methodology and leverage a cohort of existing clinical data to produce a predictive model of both tumour volume progression and the associated level of uncertainty that evolves throughout a patient's course of treatment. To capture inter-patient variability, all model parameters are patient specific, with a bootstrap particle filter-like Bayesian approach developed to model a set of training data as prior knowledge. We validate our approach against a subset of unseen data, and demonstrate both the predictive ability of our trained model and its limitations.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Teorema de Bayes , Conceptos Matemáticos , Modelos Teóricos , Neoplasias/radioterapia
14.
WIREs Mech Dis ; 16(2): e1634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38084799

RESUMEN

Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.


Asunto(s)
Neoplasias , Neovascularización Fisiológica , Humanos , Neovascularización Fisiológica/fisiología , Células Endoteliales/fisiología , Angiogénesis , Simulación por Computador , Neoplasias/irrigación sanguínea , Microambiente Tumoral
15.
Phys Rev E ; 107(6-1): 064404, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37464594

RESUMEN

The Delta-Notch system plays a vital role in many areas of biology and typically forms a salt and pepper pattern in which cells strongly expressing Delta and cells strongly expressing Notch are alternately aligned via lateral inhibition. In this study, we consider cell rearrangement events, such as cell mixing and proliferation, that alter the spatial structure itself and affect the pattern dynamics. We model cell rearrangement events by a Poisson process and analyze the model while preserving the discrete properties of the spatial structure. We investigate the effects of the intermittent perturbations arising from these cell rearrangement events on the discrete spatial structure itself in the context of pattern formation and by using an analytical approach, coupled with numerical simulation. We find that the homogeneous expression pattern is stabilized if the frequency of cell rearrangement events is sufficiently large. We analytically obtain the balanced frequencies of the cell rearrangement events where the decrease of the pattern amplitude, as a result of cell rearrangement, is balanced by the increase in amplitude due to the Delta-Notch interaction dynamics. Our framework, while applied here to the specific case of the Delta-Notch system, is applicable more widely to other pattern formation mechanisms.


Asunto(s)
Receptores Notch , Transducción de Señal , Receptores Notch/metabolismo , Proteínas de la Membrana/metabolismo , Comunicación Celular/fisiología , Diferenciación Celular
16.
Bull Math Biol ; 85(8): 74, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378740

RESUMEN

Cancer is a heterogeneous disease and tumours of the same type can differ greatly at the genetic and phenotypic levels. Understanding how these differences impact sensitivity to treatment is an essential step towards patient-specific treatment design. In this paper, we investigate how two different mechanisms for growth control may affect tumour cell responses to fractionated radiotherapy (RT) by extending an existing ordinary differential equation model of tumour growth. In the absence of treatment, this model distinguishes between growth arrest due to nutrient insufficiency and competition for space and exhibits three growth regimes: nutrient limited, space limited (SL) and bistable (BS), where both mechanisms for growth arrest coexist. We study the effect of RT for tumours in each regime, finding that tumours in the SL regime typically respond best to RT, while tumours in the BS regime typically respond worst to RT. For tumours in each regime, we also identify the biological processes that may explain positive and negative treatment outcomes and the dosing regimen which maximises the reduction in tumour burden.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Conceptos Matemáticos , Neoplasias/radioterapia , Neoplasias/patología
18.
bioRxiv ; 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37090608

RESUMEN

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogenous two-dimensional field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating non-protein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found seven of the twelve investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation, including patches of smooth skin and buds of irregular sizes. Later, after the primary feather arrays were laid out, inhibition of gap junctional intercellular communication in the ex vivo skin explant culture allowed the emergence of new feather buds in temporal waves at specific spatial locations relative to the existing primary buds. The results suggest that gap junctional communication may facilitate the propagation of long-distance inhibitory signals. Thus, the removal of GJ activity would enable the emergence of new feather buds if the local environment is competent and the threshold to form buds is reached. We propose Turing-based computational simulations that can predict the appearance of these ectopic bud waves. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.

19.
Elife ; 122023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37073859

RESUMEN

Collective cell migration plays an essential role in vertebrate development, yet the extent to which dynamically changing microenvironments influence this phenomenon remains unclear. Observations of the distribution of the extracellular matrix (ECM) component fibronectin during the migration of loosely connected neural crest cells (NCCs) lead us to hypothesize that NCC remodeling of an initially punctate ECM creates a scaffold for trailing cells, enabling them to form robust and coherent stream patterns. We evaluate this idea in a theoretical setting by developing an individual-based computational model that incorporates reciprocal interactions between NCCs and their ECM. ECM remodeling, haptotaxis, contact guidance, and cell-cell repulsion are sufficient for cells to establish streams in silico, however, additional mechanisms, such as chemotaxis, are required to consistently guide cells along the correct target corridor. Further model investigations imply that contact guidance and differential cell-cell repulsion between leader and follower cells are key contributors to robust collective cell migration by preventing stream breakage. Global sensitivity analysis and simulated gain- and loss-of-function experiments suggest that long-distance migration without jamming is most likely to occur when leading cells specialize in creating ECM fibers, and trailing cells specialize in responding to environmental cues by upregulating mechanisms such as contact guidance.


Asunto(s)
Fibronectinas , Cresta Neural , Movimiento Celular , Comunicación Celular
20.
bioRxiv ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993591

RESUMEN

Toxicity and emerging drug resistance are important challenges in PARP inhibitor (PARPi) treatment of ovarian cancer. Recent research has shown that evolutionary-inspired treatment algorithms which adapt treatment to the tumor's treatment response (adaptive therapy) can help to mitigate both. Here, we present a first step in developing an adaptive therapy protocol for PARPi treatment by combining mathematical modelling and wet-lab experiments to characterize the cell population dynamics under different PARPi schedules. Using data from in vitro Incucyte Zoom time-lapse microscopy experiments and a step-wise model selection process we derive a calibrated and validated ordinary differential equation model, which we then use to test different plausible adaptive treatment schedules. Our model can accurately predict the in vitro treatment dynamics, even to new schedules, and suggests that treatment modifications need to be carefully timed, or one risks losing control over tumour growth, even in the absence of any resistance. This is because our model predicts that multiple rounds of cell division are required for cells to acquire sufficient DNA damage to induce apoptosis. As a result, adaptive therapy algorithms that modulate treatment but never completely withdraw it are predicted to perform better in this setting than strategies based on treatment interruptions. Pilot experiments in vivo confirm this conclusion. Overall, this study contributes to a better understanding of the impact of scheduling on treatment outcome for PARPis and showcases some of the challenges involved in developing adaptive therapies for new treatment settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA