Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
2.
Pol J Radiol ; 89: e63-e69, 2024.
Article En | MEDLINE | ID: mdl-38371894

Purpose: Computed tomography (CT) pulmonary angiography is considered the gold standard for pulmonary embolism (PE) diagnosis, relying on the discrimination between contrast and embolus. Photon-counting detector CT (PCD-CT) generates monoenergetic reconstructions through energy-resolved detection. Virtual monoenergetic images (VMI) at low keV can be used to improve pulmonary artery opacification. While studies have assessed VMI for PE diagnosis on dual-energy CT (DECT), there is a lack of literature on optimal settings for PCD-CT-PE reconstructions, warranting further investigation. Material and methods: Twenty-five sequential patients who underwent PCD-CT pulmonary angiography for suspicion of acute PE were retrospectively included in this study. Quantitative metrics including signal-to-noise ratio (SNR) and contrast-to-noise (CNR) ratio were calculated for 4 VMI values (40, 60, 80, and 100 keV). Qualitative measures of diagnostic quality were obtained for proximal to distal pulmonary artery branches by 2 cardiothoracic radiologists using a 5-point modified Likert scale. Results: SNR and CNR were highest for the 40 keV VMI (49.3 ± 22.2 and 48.2 ± 22.1, respectively) and were inversely related to monoenergetic keV. Qualitatively, 40 and 60 keV both exhibited excellent diagnostic quality (mean main pulmonary artery: 5.0 ± 0 and 5.0 ± 0; subsegmental pulmonary arteries 4.9 ± 0.1 and 4.9 ± 0.1, respectively) while distal segments at high (80-100) keVs had worse quality. Conclusions: 40 keV was the best individual VMI for the detection of pulmonary embolism by quantitative metrics. Qualitatively, 40-60 keV reconstructions may be used without a significant decrease in subjective quality. VMIs at higher keV lead to reduced opacification of the distal pulmonary arteries, resulting in decreased image quality.

3.
Emerg Radiol ; 31(1): 73-82, 2024 Feb.
Article En | MEDLINE | ID: mdl-38224366

PURPOSE: Acute chest syndrome (ACS) is secondary to occlusion of the pulmonary vasculature and a potentially life-threatening complication of sickle cell disease (SCD). Dual-energy CT (DECT) iodine perfusion map reconstructions can provide a method to visualize and quantify the extent of pulmonary microthrombi. METHODS: A total of 102 patients with sickle cell disease who underwent DECT CTPA with perfusion were retrospectively identified. The presence or absence of airspace opacities, segmental perfusion defects, and acute or chronic pulmonary emboli was noted. The number of segmental perfusion defects between patients with and without acute chest syndrome was compared. Sub-analyses were performed to investigate robustness. RESULTS: Of the 102 patients, 68 were clinically determined to not have ACS and 34 were determined to have ACS by clinical criteria. Of the patients with ACS, 82.4% were found to have perfusion defects with a median of 2 perfusion defects per patient. The presence of any or new perfusion defects was significantly associated with the diagnosis of ACS (P = 0.005 and < 0.001, respectively). Excluding patients with pulmonary embolism, 79% of patients with ACS had old or new perfusion defects, and the specificity for new perfusion defects was 87%, higher than consolidation/ground glass opacities (80%). CONCLUSION: DECT iodine map has the capability to depict microthrombi as perfusion defects. The presence of segmental perfusion defects on dual-energy CT maps was found to be associated with ACS with potential for improved specificity and reclassification.


Acute Chest Syndrome , Anemia, Sickle Cell , Iodine , Pulmonary Embolism , Humans , Acute Chest Syndrome/diagnostic imaging , Retrospective Studies , Angiography/methods , Reproducibility of Results , Tomography, X-Ray Computed/methods , Lung , Pulmonary Embolism/diagnostic imaging , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnostic imaging , Perfusion
4.
Pol J Radiol ; 88: e423-e429, 2023.
Article En | MEDLINE | ID: mdl-37808170

Purpose: Left atrial calcification (LAC), a primarily radiologic diagnosis, has been associated with rheumatic heart disease (RHD) and rheumatic fever (RF). However, left atrial calcification continues to be observed despite a significant decrease in the prevalence of rheumatic heart disease. The purpose of this study was to investigate other possible etiologies of left atrial calcification. Material and methods: This retrospective, observational single-center study included patients from 2017 to 2022 identified as having left atrial calcification as well as age- and sex-matched controls. The prevalence of rheumatic heart disease, atrial ablation, and mitral valve disease was compared, and odds ratios were calculated for each independent variable. Results: Sixty-two patients with left atrial calcifications were included and compared with 62 controls. 87.1% of patients in the left atrial calcifications cohort had a history of atrial fibrillation compared with 21% in the control cohort (p < 0.001). 16.1% of patients in the calcifications cohort presented a history of rheumatic fever compared with zero in the control cohort (p = 0.004). 66.1% of the left atrial calcifications cohort had a history of atrial ablation compared with 6.5% of the control group (p < 0.001). The odds ratio for left atrial calcification was 19.0 vs. 4.8 for rheumatic fever (comparative odds = 4.0 for atrial ablation vs. rheumatic fever). Multivariable log model found atrial ablation to explain 79.8% of left atrial calcifications identified. Conclusions: Our study found a 4-fold higher association between history of atrial ablation and left atrial calcification compared with rheumatic heart disease, suggesting a potential shift in etiology.

5.
Clin Imaging ; 104: 110008, 2023 Dec.
Article En | MEDLINE | ID: mdl-37862910

PURPOSE: Photon-counting-detector computed tomography (PCD-CT) offers enhanced noise reduction, spatial resolution, and image quality in comparison to energy-integrated-detectors CT (EID-CT). These hypothesized improvements were compared using PCD-CT ultra-high (UHR) and standard-resolution (SR) scan-modes. METHODS: Phantom scans were obtained with both EID-CT and PCD-CT (UHR, SR) on an adult body-phantom. Radiation dose was measured and noise levels were compared at a minimum achievable slice thickness of 0.5 mm for EID-CT, 0.2 mm for PCD-CT-UHR and 0.4 mm for PCD-CT-SR. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were calculated for five tissue densities. Additionally, data from 25 patients who had PCD-CT of chest were reconstructed at 1 mm and 0.2 mm (UHR) slice-thickness and compared quantitatively (SNR) and qualitatively (noise, quality, sharpness, bone details). RESULTS: Phantom PCD-CT-UHR and PCD-CT-SR scans had similar measured radiation dose (16.0mGy vs 15.8 mGy). Phantom PCD-CT-SR (0.4 mm) had lower noise level in comparison to EID-CT (0.5 mm) (9.0HU vs 9.6HU). PCD-CT-UHR (0.2 mm) had slightly higher noise level (11.1HU). Phantom PCD-CT-SR (0.4 mm) had higher SNR in comparison to EID-CT (0.5 mm) while achieving higher resolution (Bone 115 vs 96, Acrylic 14 vs 14, Polyethylene 11 vs 10). SNR was slightly lower across all densities for PCD-CT UHR (0.2 mm). Interestingly, CNR was highest in the 0.2 mm PCD-CT group; PCD-CT CNR was 2.45 and 2.88 times the CNR for 0.5 mm EID-CT for acrylic and poly densities. Clinical comparison of SNR showed predictably higher SNR for 1 mm (30.3 ± 10.7 vs 14.2 ± 7, p = 0.02). Median subjective ratings were higher for 0.2 mm UHR vs 1 mm PCD-CT for nodule contour (4.6 ± 0.3 vs 3.6 ± 0.1, p = 0.02), bone detail (5 ± 0 vs 4 ± 0.1, p = 0.001), image quality (5 ± 0.1 vs 4.6 ± 0.4, p = 0.001), and sharpness (5 ± 0.1 vs 4 ± 0.2). CONCLUSION: Both UHR and SR PCD-CT result in similar radiation dose levels. PCD-CT can achieve higher resolution with lower noise level in comparison to EID-CT.


Photons , Tomography, X-Ray Computed , Adult , Humans , Tomography, X-Ray Computed/methods , Lung , Radiation Dosage , Signal-To-Noise Ratio , Phantoms, Imaging
7.
Acta Radiol ; 64(10): 2722-2730, 2023 Oct.
Article En | MEDLINE | ID: mdl-37649280

BACKGROUND: Detecting occlusions of coronary artery bypass grafts using non-contrast computed tomography (CT) series is understudied and underestimated. PURPOSE: To evaluate morphological findings for the diagnosis of chronic coronary artery bypass graft occlusion on non-contrast CT and investigate performance statistics for potential use cases. MATERIAL AND METHODS: Seventy-three patients with coronary artery bypass grafts who had CT angiography of the chest (non-contrast and arterial phases) were retrospectively included. Two readers applied pre-set morphologic findings to assess the patency of a bypass graft on non-contrast series. These findings included vessel shape (linear-band like), collapsed lumen and surgical graft marker without a visible vessel. Performance was tested using the simultaneously acquired arterial phase series as the ground truth. RESULTS: The per-patient diagnostic accuracy for occlusion was 0.890 (95% confidence interval = 0.795-0.951). Venous grafts overall had an 88% accuracy. None of the left internal mammary artery to left anterior descending artery arterial graft occlusions were detected. The negative likelihood ratio for an occluded graft that is truly patent was 0.121, demonstrating a true post-test probability of 97% for identifying a patent graft as truly patent given a prevalence of 20% occlusion at a median 8.4 years post-surgery. Neither years post-surgery, nor number of vessels was associated with a significant decrease in reader accuracy. CONCLUSION: Evaluation of coronary bypass grafts for chronic occlusion on non-contrast CT based off vessel morphology is feasible and accurate for venous grafts. Potential use cases include low-intermediate risk patients with chest pain or shortness of breath for whom non-contrast CT was ordered, or administration of iodine-based contrast is contraindicated.


Coronary Artery Bypass , Tomography, X-Ray Computed , Humans , Retrospective Studies , Coronary Angiography/methods , Vascular Patency , Sensitivity and Specificity , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Tomography, X-Ray Computed/methods , Graft Occlusion, Vascular/diagnostic imaging
8.
Clin Imaging ; 100: 24-29, 2023 Aug.
Article En | MEDLINE | ID: mdl-37167806

RATIONALE: Single-photon-emission-computerized-tomography/computed-tomography(SPECT/CT) is commonly used for pulmonary disease. Scant work has been done to determine ability of AI for secondary findings using low-dose-CT(LDCT) attenuation correction series of SPECT/CT. METHODS: 120 patients with ventilation-perfusion-SPECT/CT from 9/1/21-5/1/22 were included in this retrospective study. AI-RAD companion(VA10A,Siemens-Healthineers, Erlangen, Germany), an ensemble of deep-convolutional-neural-networks was evaluated for the detection of pulmonary nodules, coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss. Accuracy, sensitivity, specificity was measured for the outcomes. Inter-rater reliability were measured. Inter-rater reliability was measured using the intraclass correlation coefficient (ICC) by comparing the number of nodules identified by the AI to radiologist. RESULTS: Overall per-nodule accuracy, sensitivity, and specificity for detection of lung nodules were 0.678(95%CI 0.615-0.732), 0.956(95%CI 0.900-0.985), and 0.456(95%CI 0.376-0.543), respectively, with an intraclass correlation coefficient (ICC) between AI and radiologist of 0.78(95%CI 0.71-0.83). Overall per-patient accuracy for AI detection of coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss was 0.939(95%CI 0.878-0.975), 0.974(95%CI 0.925-0.995), and 0.857(95%CI 0.781-0.915), respectively. Sensitivity for coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss was 0.898(95%CI 0.778-0.966), 1 (95%CI 0.958-1), and 1 (95%CI 0.961-1), respectively. Specificity for coronary artery calcium, aortic ectasia/aneurysm, and vertebral height loss was 0.969(95% CI 0.893-0.996), 0.897 (95% CI 0.726-0.978), and 0.346 (95% CI 0.172-0.557), respectively. CONCLUSION: AI ensemble was accurate for coronary artery calcium and aortic ectasia/aneurysm, while sensitive for aortic ectasia/aneurysm, lung nodules and vertebral height loss on LDCT attenuation correction series of SPECT/CT.


Artificial Intelligence , Calcium , Humans , Retrospective Studies , Dilatation, Pathologic , Reproducibility of Results , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Lung , Perfusion
9.
J Phys Chem B ; 125(15): 3739-3751, 2021 04 22.
Article En | MEDLINE | ID: mdl-33826319

Proteins with BAR domains function to bind to and remodel biological membranes, where the dimerization of BAR domains is a key step in this function. These domains can dimerize in solution or after localizing to the membrane surface. Here, we characterize the binding thermodynamics of homodimerization between the LSP1 BAR domain proteins in solution, using molecular dynamics (MD) simulations. By combining the MARTINI coarse-grained protein models with enhanced sampling through metadynamics, we construct a two-dimensional free energy surface quantifying the bound versus unbound ensembles as a function of two distance variables. With this methodology, our simulations can simultaneously characterize the structures and relative stabilities of a range of sampled dimers, portraying a heterogeneous and extraordinarily stable bound ensemble, where the proper crystal structure dimer is the most stable in a 100 mM NaCl solution. Nonspecific dimers that are sampled involve contacts that are consistent with experimental structures of higher-order oligomers formed by the LSP1 BAR domain. Because the BAR dimers and oligomers can assemble on membranes, we characterize the relative alignment of the known membrane binding patches, finding that only the specific dimer is aligned to form strong interactions with the membrane. Hence, we would predict a strong selection of the specific dimer in binding to or assembling when on the membrane. Establishing the pairwise stabilities of homodimer contacts is difficult experimentally when the proteins form stable oligomers, but through the method used here, we can isolate these contacts, providing a foundation to study the same interactions on the membrane.


Molecular Dynamics Simulation , Proteins , Cell Membrane/metabolism , Dimerization , Proteins/metabolism , Thermodynamics
...