Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 69(1): 96-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34101580

RESUMEN

Traditional Potentiometric Ion-selective Electrodes (ISE) are widely used in industrial and clinical settings. The simplicity and small footprint of ISE have encouraged their recent adoption as wearable/implantable sensors for personalized healthcare and precision agriculture, creating a new set of unique challenges absent in traditional ISE. In this paper, we develop a fundamental physics-based model to describe both steady-state and transient responses of ISE relevant for wearable/implantable sensors. The model is encapsulated in a "generalized Nernst formula" that explicitly accounts for the analyte density, time-dynamics of signal transduction, ion-selective membrane thickness, and other sensor parameters. The formula is validated numerically by self-consistent modeling of multispecies ion-transport and experimentally by interpreting the time dynamics and thickness dependence of thin-film solid-contact and graphene-based ISE sensors for measuring soil nitrate concentration. These fundamental results will support the accelerated development of ISE for wearable/implantable applications.


Asunto(s)
Electrodos de Iones Selectos , Dispositivos Electrónicos Vestibles , Potenciometría
2.
Sci Adv ; 5(7): eaav7127, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31334347

RESUMEN

Infrared (IR) imaging has become a viable tool for visualizing various chemical bonds in a specimen. The performance, however, is limited in terms of spatial resolution and imaging speed. Here, instead of measuring the loss of the IR beam, we use a pulsed visible light for high-throughput, widefield sensing of the transient photothermal effect induced by absorption of single mid-IR pulses. To extract these transient signals, we built a virtual lock-in camera synchronized to the visible probe and IR light pulses with precisely controlled delays, allowing submicrosecond temporal resolution determined by the probe pulse width. Our widefield photothermal sensing microscope enabled chemical imaging at a speed up to 1250 frames/s, with high spectral fidelity, while offering submicrometer spatial resolution. With the capability of imaging living cells and nanometer-scale polymer films, widefield photothermal microscopy opens a new way for high-throughput characterization of biological and material specimens.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía/métodos , Impresión Molecular/métodos , Humanos , Rayos Infrarrojos
3.
Nano Lett ; 19(6): 3796-3803, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31067061

RESUMEN

The field of thermoplasmonics has thrived in the past decades because it uniquely provides remotely controllable nanometer-scale heat sources that have augmented numerous technologies. Despite the extensive studies on steady-state plasmonic heating, the dynamic behavior of the plasmonic heaters in the nanosecond regime has remained largely unexplored, yet such a time scale is indeed essential for a broad range of applications such as photocatalysis, optical modulators, and detectors. Here, we use two distinct techniques based on the temperature-dependent surface reflectivity of materials, optical thermoreflectance imaging (OTI) and time-domain thermoreflectance (TDTR), to comprehensively investigate plasmonic heating in both spatial and temporal domains. Specifically, OTI enables the rapid visualization of plasmonic heating with sub-micron resolution, outperforming a standard thermal camera, and allows us to establish the connection between the optical absorptance and heating efficiency as well as to analyze plasmonic heating dynamics on the millisecond scale. Using the TDTR technique, we, for the first time, study the optical resonance-dependent heat-transfer dynamics of a nanometer-scale plasmonic structure in the nanosecond regime and use a detailed computational model to extract the impulse response and thermal interface conductance of a multilayer plasmonic structure. The study reveals a quantitative relationship between the dimensions of the nanopatterned structure and its spatiotemporal thermal response to the light pulse excitation, a thermoplasmonic effect resulting from the spatial distribution of the absorbed electromagnetic energy. We also conclude that the two thermoreflectance techniques provide necessary feedback to nanoscale thermoplasmonic heat management, for which optimization in either heating power or temperature decay speed is needed.

4.
Nat Nanotechnol ; 13(1): 24-28, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29255287

RESUMEN

The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec-1 at room temperature and therefore precludes lowering of the supply voltage and overall power consumption 1,2 . Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier 3 . Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel 4-12 . Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 µA µm-1 and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.

5.
ACS Omega ; 2(11): 7723-7729, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457329

RESUMEN

The self-heating effect is a severe issue for high-power semiconductor devices, which degrades the electron mobility and saturation velocity, and also affects the device reliability. On applying an ultrafast and high-resolution thermoreflectance imaging technique, the direct self-heating effect and surface temperature increase phenomenon are observed on novel top-gate ß-Ga2O3 on insulator field-effect transistors. Here, we demonstrate that by utilizing a higher thermal conductivity sapphire substrate rather than a SiO2/Si substrate, the temperature rise above room temperature of ß-Ga2O3 on the insulator field-effect transistor can be reduced by a factor of 3 and thereby the self-heating effect is significantly reduced. Both thermoreflectance characterization and simulation verify that the thermal resistance on the sapphire substrate is less than 1/3 of that on the SiO2/Si substrate. Therefore, maximum drain current density of 535 mA/mm is achieved on the sapphire substrate, which is 70% higher than that on the SiO2/Si substrate due to reduced self-heating. Integration of ß-Ga2O3 channel on a higher thermal conductivity substrate opens a new route to address the low thermal conductivity issue of ß-Ga2O3 for power electronics applications.

6.
Nano Lett ; 16(5): 3130-6, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27070737

RESUMEN

During routine operation, electrically percolating nanocomposites are subjected to high voltages, leading to spatially heterogeneous current distribution. The heterogeneity implies localized self-heating that may (self-consistently) reroute the percolation pathways and even irreversibly damage the material. In the absence of experiments that can spatially resolve the current distribution and a nonlinear percolation model suitable to interpret them, one relies on empirical rules and safety factors to engineer these materials. In this paper, we use ultrahigh resolution thermo-reflectance imaging, coupled with a new imaging processing technique, to map the spatial distribution ΔT(x, y; I) and histogram f(ΔT) of temperature rise due to self-heating in two types of 2D networks (percolating and copercolating). Remarkably, we find that the self-heating can be described by a simple two-parameter Weibull distribution, even under voltages high enough to reconfigure the percolation pathways. Given the generality of the phenomenological argument supporting the distribution, other percolating networks are likely to show similar stress distribution in response to sufficiently large stimuli. Furthermore, the spatial evolution of the self-heating of network was investigated by analyzing the spatial distribution and spatial correlation, respectively. An estimation of degree of hotspot clustering reveals a mechanism analogous to crystallization physics. The results should encourage nonlinear generalization of percolation models necessary for predictive engineering of nanocomposite materials.

7.
Analyst ; 141(4): 1462-71, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26818108

RESUMEN

This microsupercapacitor ageing study demonstrates the usefulness of the electroreflectance technique by quantifying local charge accumulation. Two separate devices with interdigitated electrodes were evaulated over a period of 4.1 million charge/discharge cycles. The key results are spatial mapping of charge accumulation in the gold electrodes derived from variation in the observed electrode reflectance. The nominal device exhibited little change in spatial distribution throughout the ageing cycle and serves as a comparison for the test device, which exhibited some nonuniform charge accumulation behavior. Further, an accelerated ageing test was completed by applying increasing voltage pulses up to 1.46 V to the device. Visual evidence of electrode ageing emerged in the reflectance distribution. An equivalent circuit model was developed to assess the evolution of individual circuit elements that correlate to the physical causes of ageing.

8.
Analyst ; 141(4): 1448-61, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26817992

RESUMEN

Electroreflectance microscopy is demonstrated as a high-resolution, non-contact method to image dynamic charge distribution in integrated microsupercapacitor structures during fast voltage cycling. Electroreflectance camera images of a gold electrode H3PO4 polymer electrolyte microsupercapacitor reveal time varying charge distribution with submicron spatial resolution, millisecond time resolution, and electroreflectance resolution on the order of 500 nC cm(-2). A model describing changes in the metal electrode's optical constants as a function of free electron concentration shows good agreement with measured electroreflectance. The proposed method can be used for sensitive, non-contact measurements of charge spatial distribution, and defect and performance characterization in electrode-electrolyte microdevices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...