Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Cancer Cell ; 39(9): 1214-1226.e10, 2021 09 13.
Article En | MEDLINE | ID: mdl-34375612

PARP7 is a monoPARP that catalyzes the transfer of single units of ADP-ribose onto substrates to change their function. Here, we identify PARP7 as a negative regulator of nucleic acid sensing in tumor cells. Inhibition of PARP7 restores type I interferon (IFN) signaling responses to nucleic acids in tumor models. Restored signaling can directly inhibit cell proliferation and activate the immune system, both of which contribute to tumor regression. Oral dosing of the PARP7 small-molecule inhibitor, RBN-2397, results in complete tumor regression in a lung cancer xenograft and induces tumor-specific adaptive immune memory in an immunocompetent mouse cancer model, dependent on inducing type I IFN signaling in tumor cells. PARP7 is a therapeutic target whose inhibition induces both cancer cell-autonomous and immune stimulatory effects via enhanced IFN signaling. These data support the targeting of a monoPARP in cancer and introduce a potent and selective PARP7 inhibitor to enter clinical development.


Drug Resistance, Neoplasm/drug effects , Interferon Type I/metabolism , Neoplasms/drug therapy , Nucleoside Transport Proteins/genetics , Nucleoside Transport Proteins/metabolism , Small Molecule Libraries/administration & dosage , Adaptive Immunity/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HEK293 Cells , HeLa Cells , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Tumor Escape/drug effects , Xenograft Model Antitumor Assays
2.
Chembiochem ; 22(12): 2107-2110, 2021 06 15.
Article En | MEDLINE | ID: mdl-33838082

PARP14 is an interferon-stimulated gene that is overexpressed in multiple tumor types, influencing pro-tumor macrophage polarization as well as suppressing the antitumor inflammation response by modulating IFN-γ and IL-4 signaling. PARP14 is a 203 kDa protein that possesses a catalytic domain responsible for the transfer of mono-ADP-ribose to its substrates. PARP14 also contains three macrodomains and a WWE domain which are binding modules for mono-ADP-ribose and poly-ADP-ribose, respectively, in addition to two RNA recognition motifs. Catalytic inhibitors of PARP14 have been shown to reverse IL-4 driven pro-tumor gene expression in macrophages, however it is not clear what roles the non-enzymatic biomolecular recognition motifs play in PARP14-driven immunology and inflammation. To further understand this, we have discovered a heterobifunctional small molecule designed based on a catalytic inhibitor of PARP14 that binds in the enzyme's NAD+ -binding site and recruits cereblon to ubiquitinate it and selectively target it for degradation.


Poly(ADP-ribose) Polymerases/metabolism , Small Molecule Libraries/pharmacology , Humans , Macrophages/drug effects , Macrophages/metabolism , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
3.
Cell Chem Biol ; 28(8): 1158-1168.e13, 2021 08 19.
Article En | MEDLINE | ID: mdl-33705687

PARP14 has been implicated by genetic knockout studies to promote protumor macrophage polarization and suppress the antitumor inflammatory response due to its role in modulating interleukin-4 (IL-4) and interferon-γ signaling pathways. Here, we describe structure-based design efforts leading to the discovery of a potent and highly selective PARP14 chemical probe. RBN012759 inhibits PARP14 with a biochemical half-maximal inhibitory concentration of 0.003 µM, exhibits >300-fold selectivity over all PARP family members, and its profile enables further study of PARP14 biology and disease association both in vitro and in vivo. Inhibition of PARP14 with RBN012759 reverses IL-4-driven protumor gene expression in macrophages and induces an inflammatory mRNA signature similar to that induced by immune checkpoint inhibitor therapy in primary human tumor explants. These data support an immune suppressive role of PARP14 in tumors and suggest potential utility of PARP14 inhibitors in the treatment of cancer.


Antineoplastic Agents/pharmacology , Inflammation/drug therapy , Interleukin-4/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Macrophages/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-4/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Poly(ADP-ribose) Polymerases/genetics , RAW 264.7 Cells , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Cell Chem Biol ; 27(7): 877-887.e14, 2020 07 16.
Article En | MEDLINE | ID: mdl-32679093

Poly(ADP-ribose) polymerase (PARP) enzymes use nicotinamide adenine dinucleotide (NAD+) to modify up to seven different amino acids with a single mono(ADP-ribose) unit (MARylation deposited by PARP monoenzymes) or branched poly(ADP-ribose) polymers (PARylation deposited by PARP polyenzymes). To enable the development of tool compounds for PARP monoenzymes and polyenzymes, we have developed active site probes for use in in vitro and cellular biophysical assays to characterize active site-directed inhibitors that compete for NAD+ binding. These assays are agnostic of the protein substrate for each PARP, overcoming a general lack of knowledge around the substrates for these enzymes. The in vitro assays use less enzyme than previously described activity assays, enabling discrimination of inhibitor potencies in the single-digit nanomolar range, and the cell-based assays can differentiate compounds with sub-nanomolar potencies and measure inhibitor residence time in live cells.


Fluorescent Dyes/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Binding, Competitive , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , HEK293 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , NAD/chemistry , NAD/metabolism , Nanoparticles/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Surface Plasmon Resonance
5.
SLAS Discov ; 25(3): 241-252, 2020 Mar.
Article En | MEDLINE | ID: mdl-31855104

Mono(ADP-ribosylation) (MARylation) and poly(ADP-ribosylation) (PARylation) are posttranslational modifications found on multiple amino acids. There are 12 enzymatically active mono(ADP-ribose) polymerase (monoPARP) enzymes and 4 enzymatically active poly(ADP-ribose) polymerase (polyPARP) enzymes that use nicotinamide adenine dinucleotide (NAD+) as the ADP-ribose donating substrate to generate these modifications. While there are approved drugs and clinical trials ongoing for the enzymes that perform PARylation, MARylation is gaining recognition for its role in immune function, inflammation, and cancer. However, there is a lack of chemical probes to study the function of monoPARPs in cells and in vivo. An important first step to generating chemical probes for monoPARPs is to develop biochemical assays to enable hit finding, and determination of the potency and selectivity of inhibitors. Complicating the development of enzymatic assays is that it is poorly understood how monoPARPs engage their substrates. To overcome this, we have developed a family-wide approach to developing robust high-throughput monoPARP assays where the enzymes are immobilized and forced to self-modify using biotinylated-NAD+, which is detected using a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) readout. Herein we describe the development of assays for 12 monoPARPs and 3 polyPARPs and apply them to understand the potency and selectivity of a focused library of inhibitors across this family.


ADP Ribose Transferases/antagonists & inhibitors , Enzyme Inhibitors/isolation & purification , High-Throughput Screening Assays , Poly(ADP-ribose) Polymerase Inhibitors/isolation & purification , Protein Processing, Post-Translational/genetics , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/genetics , ADP-Ribosylation/genetics , Adenosine Diphosphate Ribose/genetics , Enzyme Inhibitors/pharmacology , Humans , NAD/chemistry , Poly ADP Ribosylation/genetics , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/drug effects , Poly(ADP-ribose) Polymerases/genetics , Substrate Specificity
6.
ACS Med Chem Lett ; 7(2): 162-6, 2016 Feb 11.
Article En | MEDLINE | ID: mdl-26985292

The recent publication of a potent and selective inhibitor of protein methyltransferase 5 (PRMT5) provides the scientific community with in vivo-active tool compound EPZ015666 (GSK3235025) to probe the underlying pharmacology of this key enzyme. Herein, we report the design and optimization strategies employed on an initial hit compound with poor in vitro clearance to yield in vivo tool compound EPZ015666 and an additional potent in vitro tool molecule EPZ015866 (GSK3203591).

7.
J Med Chem ; 59(4): 1556-64, 2016 Feb 25.
Article En | MEDLINE | ID: mdl-26769278

Posttranslational methylation of histones plays a critical role in gene regulation. Misregulation of histone methylation can lead to oncogenic transformation. Enhancer of Zeste homologue 2 (EZH2) methylates histone 3 at lysine 27 (H3K27) and abnormal methylation of this site is found in many cancers. Tazemetostat, an EHZ2 inhibitor in clinical development, has shown activity in both preclinical models of cancer as well as in patients with lymphoma or INI1-deficient solid tumors. Herein we report the structure-activity relationships from identification of an initial hit in a high-throughput screen through selection of tazemetostat for clinical development. The importance of several methyl groups to the potency of the inhibitors is highlighted as well as the importance of balancing pharmacokinetic properties with potency.


Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histones/metabolism , Methylation/drug effects , Polycomb Repressive Complex 2/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Drug Discovery , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Polycomb Repressive Complex 2/metabolism , Protein Processing, Post-Translational/drug effects , Small Molecule Libraries/pharmacokinetics , Structure-Activity Relationship
8.
Nat Chem Biol ; 11(6): 432-7, 2015 Jun.
Article En | MEDLINE | ID: mdl-25915199

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.


Antineoplastic Agents/pharmacology , Isoquinolines/pharmacology , Lymphoma, Mantle-Cell/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/enzymology , Male , Methylation , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Protein Binding , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays , snRNP Core Proteins/metabolism
9.
Biochem J ; 453(2): 241-7, 2013 Jul 15.
Article En | MEDLINE | ID: mdl-23679895

H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.


Chromatin/metabolism , Histones/metabolism , Lysine/metabolism , Polycomb Repressive Complex 2/metabolism , Amino Acid Sequence , Biocatalysis , Humans , Methylation , Methyltransferases/chemistry , Methyltransferases/metabolism , Molecular Sequence Data , Polycomb Repressive Complex 2/chemistry , Protein Conformation , Sequence Homology, Amino Acid
10.
Nat Chem Biol ; 8(11): 890-6, 2012 Nov.
Article En | MEDLINE | ID: mdl-23023262

EZH2 catalyzes trimethylation of histone H3 lysine 27 (H3K27). Point mutations of EZH2 at Tyr641 and Ala677 occur in subpopulations of non-Hodgkin's lymphoma, where they drive H3K27 hypertrimethylation. Here we report the discovery of EPZ005687, a potent inhibitor of EZH2 (K(i) of 24 nM). EPZ005687 has greater than 500-fold selectivity against 15 other protein methyltransferases and has 50-fold selectivity against the closely related enzyme EZH1. The compound reduces H3K27 methylation in various lymphoma cells; this translates into apoptotic cell killing in heterozygous Tyr641 or Ala677 mutant cells, with minimal effects on the proliferation of wild-type cells. These data suggest that genetic alteration of EZH2 (for example, mutations at Tyr641 or Ala677) results in a critical dependency on enzymatic activity for proliferation (that is, the equivalent of oncogene addiction), thus portending the clinical use of EZH2 inhibitors for cancers in which EZH2 is genetically altered.


Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histones/metabolism , Indazoles/pharmacology , Lymphoma/drug therapy , Lymphoma/pathology , Polycomb Repressive Complex 2/antagonists & inhibitors , Pyridones/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enhancer of Zeste Homolog 2 Protein , Enzyme Inhibitors/chemistry , Histones/chemistry , Humans , Indazoles/chemistry , Lymphoma/enzymology , Lymphoma/genetics , Lysine/metabolism , Methylation/drug effects , Molecular Structure , Point Mutation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Pyridones/chemistry , Structure-Activity Relationship
11.
Chem Biol Drug Des ; 80(6): 971-80, 2012 Dec.
Article En | MEDLINE | ID: mdl-22978415

DOT1L is the human protein methyltransferase responsible for catalyzing the methylation of histone H3 on lysine 79 (H3K79). The ectopic activity of DOT1L, associated with the chromosomal translocation that is a universal hallmark of MLL-rearranged leukemia, is a required driver of leukemogenesis in this malignancy. Here, we present studies on the structure-activity relationship of aminonucleoside-based DOT1L inhibitors. Within this series, we find that improvements in target enzyme affinity and selectivity are driven entirely by diminution of the dissociation rate constant for the enzyme-inhibitor complex, leading to long residence times for the binary complex. The biochemical K(i) and residence times measured for these inhibitors correlate well with their effects on intracellular H3K79 methylation and MLL-rearranged leukemic cell killing. Crystallographic studies reveal a conformational adaptation mechanism associated with high-affinity inhibitor binding and prolonged residence time; these studies also suggest that conformational adaptation likewise plays a critical role in natural ligand interactions with the enzyme, hence, facilitating enzyme turnover. These results provide critical insights into the role of conformational adaptation in the enzymatic mechanism of catalysis and in pharmacologic intervention for DOT1L and other members of this enzyme class.


Enzyme Inhibitors/chemistry , Methyltransferases/antagonists & inhibitors , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/metabolism , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Kinetics , Methylation , Methyltransferases/metabolism , Molecular Docking Simulation , Nucleosides/chemistry , Nucleosides/metabolism , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship
12.
FEBS Lett ; 586(19): 3448-51, 2012 Sep 21.
Article En | MEDLINE | ID: mdl-22850114

Heterozygous point mutations at Y641 and A677 in the EZH2 SET domain are prevalent in about 10-24% of Non-Hodgkin lymphomas (NHL). Previous studies indicate that these are gain-of-function mutations leading to the hypertrimethylation of H3K27. These EZH2 mutations may drive the proliferation of lymphoma and make EZH2 a molecular target for patients harboring these mutations. Here, another EZH2 SET domain point mutation, A687V, occurring in about 1-2% of lymphoma patients, is also shown to be a gain-of-function mutation that greatly enhances its ability to perform dimethylation relative to wild-type EZH2 and is equally proficient at catalyzing trimethylation. We propose that A687V EZH2 also leads to hypertrimethylation of H3K27 and may thus be a driver mutation in NHL.


Lymphoma, Non-Hodgkin/enzymology , Lymphoma, Non-Hodgkin/genetics , Mutant Proteins/genetics , Neoplasm Proteins/genetics , Point Mutation , Polycomb Repressive Complex 2/genetics , Enhancer of Zeste Homolog 2 Protein , Heterozygote , Histones/chemistry , Histones/metabolism , Humans , Kinetics , Methylation , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Cancer Cell ; 20(1): 53-65, 2011 Jul 12.
Article En | MEDLINE | ID: mdl-21741596

Mislocated enzymatic activity of DOT1L has been proposed as a driver of leukemogenesis in mixed lineage leukemia (MLL). The characterization of EPZ004777, a potent, selective inhibitor of DOT1L is reported. Treatment of MLL cells with the compound selectively inhibits H3K79 methylation and blocks expression of leukemogenic genes. Exposure of leukemic cells to EPZ004777 results in selective killing of those cells bearing the MLL gene translocation, with little effect on non-MLL-translocated cells. Finally, in vivo administration of EPZ004777 leads to extension of survival in a mouse MLL xenograft model. These results provide compelling support for DOT1L inhibition as a basis for targeted therapeutics against MLL.


Enzyme Inhibitors/pharmacology , Leukemia, Biphenotypic, Acute/pathology , Methyltransferases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Gene Expression Profiling , Gene Expression Regulation, Leukemic/drug effects , Gene Rearrangement/drug effects , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histones/metabolism , Humans , Leukemia, Biphenotypic, Acute/genetics , Lysine/metabolism , Methylation/drug effects , Methyltransferases/metabolism , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Xenograft Model Antitumor Assays
14.
Chem Biol Drug Des ; 78(2): 199-210, 2011 Aug.
Article En | MEDLINE | ID: mdl-21564555

A survey of the human genome was performed to understand the constituency of protein methyltransferases (both protein arginine and lysine methyltransferases) and the relatedness of their catalytic domains. We identified 51 protein lysine methyltransferase proteins based on similarity to the canonical Drosophila Su(var)3-9, enhancer of zeste (E(z)), and trithorax (trx) domain. Disruptor of telomeric silencing-1-like, a known protein lysine methyltransferase, did not fit within the protein lysine methyltransferase family, but did group with the protein arginine methyltransferases, along with 44 other proteins, including the METTL and NOP2/Sun domain family proteins. We show that a representative METTL, METTL11A, demonstrates catalytic activity as a histone methyltransferase. We also solved the co-crystal structures of disruptor of telomeric silencing-1-like with S-adenosylmethionine and S-adenosylhomocysteine bound in its active site. The conformation of both ligands is virtually identical to that found in known protein arginine methyltransferases, METTL and NOP2/Sun domain family proteins and is distinct from that seen in the Drosophila Su(var)3-9, enhancer of zeste (E(z)), and trithorax (trx) domain protein lysine methyltransferases. We have developed biochemical assays for 11 members of the protein methyltransferase target class and have profiled the affinity of three ligands for these enzymes: the common methyl-donating substrate S-adenosylmethionine; the common reaction product S-adenosylhomocysteine; and the natural product sinefungin. The affinity of each of these ligands is mapped onto the family trees of the protein lysine methyltransferases and protein arginine methyltransferases to reveal patterns of ligand recognition by these enzymes.


Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Models, Molecular , Binding Sites , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Ligands , Molecular Structure , Phylogeny
...