Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Environ Manage ; 354: 120339, 2024 Mar.
Article En | MEDLINE | ID: mdl-38401495

Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.


Water Pollutants, Chemical , Water Purification , Wastewater , Oxidation-Reduction , Water , Oxidative Stress , Water Pollutants, Chemical/toxicity
2.
J Environ Manage ; 351: 119672, 2024 Feb.
Article En | MEDLINE | ID: mdl-38042072

Over the past few decades, the increase in dependency on healthcare facilities has led to the generation of large quantities of hospital wastewater (HWW) rich in chemical oxygen demand (COD), total suspended solids (TSS), ammonia, recalcitrant pharmaceutically active compounds (PhACs), and other disease-causing microorganisms. Conventional treatment methods often cannot effectively remove the PhACs present in wastewater. Hence, hybrid processes comprising of biological treatment and advanced oxidation processes have been used recently to treat complex wastewater. The current study explores the performance of pilot-scale treatment of real HWW (3000 L/d) spiked with carbamazepine (CBZ) using combinations of moving and stationary bed bio-reactor-sedimentation tank (MBSST), aerated horizontal flow constructed wetland (AHFCW), and photocatalysis. The combination of MBSST and AHFCW could remove 85% COD, 93% TSS, 99% ammonia, and 30% CBZ. However, when the effluent of the AHFCW was subjected to photocatalysis, an enhanced CBZ removal of around 85% was observed. Furthermore, the intermediate products (IPs) formed after the photocatalysis was also less toxic than the IPs formed during the biological processes. The results of this study indicated that the developed pilot-scale treatment unit supplemented with photocatalysis could be used effectively to treat HWW.


Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Ammonia , Carbamazepine/analysis , Biological Oxygen Demand Analysis , Hospitals
3.
Chemosphere ; 344: 140264, 2023 Dec.
Article En | MEDLINE | ID: mdl-37758081

Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.


Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Humans , Environmental Monitoring/methods , Environmental Pollution/analysis , Wastewater
4.
J Environ Manage ; 325(Pt A): 116443, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36228396

The shortage of water resources and generation of large quantum of wastewater has posed a significant concern to the environment and public health. Recent research on wastewater treatment has started to focus on reusing wastewater for different activities to reduce the stress on natural water resources. Constructed wetland (CWs) is a low-cost wastewater treatment option. However, some drawbacks include large areal requirements and the need for tertiary treatment units for reusable effluent. In this study, a novel composite baffled horizontal flow CW filter unit (BHFCW-FU) was developed to overcome the drawbacks of the conventional CW. The BHFCW-FU planted with Chrysopogon zizanioides provided a nine times longer flow path, and the adjoined variable depth dual media filter reduced the total area requirement and served as a polishing unit. On average, the BHFCW-FU with horizontal sub-surface flow regime could efficiently remove around 93.93%, 87.20%, and 66.25% of turbidity, phenol, and COD, respectively, from real petrochemical wastewater (initial turbidity: 29.6 NTU, phenol: 4.52 mg/L, and COD: 381 mg/L) and rendered the effluent quality reusable for irrigation, industrial, and other environmental purposes. In synthetic wastewater (initial turbidity: 754 NTU, phenol: 10.87 mg/L, and COD: 1691 mg/L), the removal efficiency of turbidity, phenol, and COD were 99.50%, 93.73%, and 87.05%, respectively. In-depth substrate characterization was done to study the removal mechanism. The developed BHFCW-FU required less space and maintenance, provided reusable effluent, and overcame the drawbacks of conventional CWs. Hence, it may show immense potential as an effective wastewater treatment.


Wastewater , Water Purification , Wastewater/analysis , Wetlands , Waste Disposal, Fluid , Phenols
5.
J Environ Manage ; 308: 114609, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35101807

Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, ß-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.


COVID-19 , Medical Waste Disposal , Hospitals , Humans , Medical Waste Disposal/methods , Pandemics , Risk Assessment , SARS-CoV-2 , Wastewater/analysis
6.
J Environ Manage ; 293: 112858, 2021 Sep 01.
Article En | MEDLINE | ID: mdl-34052613

The rapid rise in the healthcare sector has led to an increase in pharmaceutically active compounds (PhACs) in different aqueous bodies. The toxicity of the PhACs and their ability to persist after conventional treatment processes have escalated research in the field of photocatalytic treatment. Although different photocatalysts have been successful in degrading PhACs, their inherent drawbacks have severely limited their application on a large scale. A substantial amount of research has been aimed at overcoming the high cost of the photocatalytic material, low quantum yield, the formation of toxic end products, etc. Hence, to further research in this field, researchers must have a fair idea of the current trends in the application of different photocatalysts. In this article, the trends in the use of various photocatalysts for the removal of different PhACs have been circumscribed. The performance of different groups of photocatalysts to degrade PhACs from synthetic and real wastewater has been addressed. The drawbacks and advantages of these materials have been compared, and their future in the field of PhACs removal has been predicted using S-curve analysis. Zinc and titanium-based photocatalysts were efficient under UV irradiation, while bismuth and graphene-based materials exhibited exemplary performance in visible light. However, iron-based compounds were found to have the most promising future, which may be because of their magnetic properties, easy availability, low bandgap, etc. Different modification techniques, such as morphology modification, doping, heterojunction formation, etc., have also been discussed. This study may help researchers to clarify the current research status in the field of photocatalytic treatment of PhACs and provide valuable information for future research.


Water Pollutants, Chemical , Water Purification , Bismuth , Catalysis , Titanium , Wastewater , Water Pollutants, Chemical/analysis
7.
RSC Adv ; 11(32): 19788-19796, 2021 May 27.
Article En | MEDLINE | ID: mdl-35479224

The impact of micro and nanoplastic debris on our aquatic ecosystem is among the most prominent environmental challenges we face today. In addition, nanoplastics create significant concern for environmentalists because of their toxicity and difficulty in separation and removal. Here we report the development of a 3D printed moving bed water filter (M-3DPWF), which can perform as an efficient nanoplastic scavenger. The enhanced separation of the nanoplastics happens due to the creation of a charged filter material that traps the more surface charged nanoparticles selectively. Synthetic contaminated water from polycarbonate waste has been tested with the filter, and enhanced nanoplastic removal has been achieved. The proposed filtration mechanism of surface-charge based water cleaning is further validated using density function theory (semi-empirical) based simulation. The filter has also shown good structural and mechanical stability in both static and dynamic water conditions. The field suitability of the novel treatment system has also been confirmed using water from various sources, such as sea, river, and pond. Our results suggest that the newly developed water filter can be used for the removal of floating nanoparticles in water as a robust advanced treatment system.

8.
Sci Total Environ ; 755(Pt 2): 142540, 2021 Feb 10.
Article En | MEDLINE | ID: mdl-33038812

Constructed wetlands (CWs) are one of the most promising and sustainable alternatives for wastewater treatment that are being successfully implemented in several countries, especially in tropical and sub-tropical regions. The predominant mechanisms of removal of contaminants in CWs are microbial degradation, phytodegradation, phytoextraction, filtration, sedimentation, and adsorption, etc. Vertical flow subsurface CWs and hybrid CWs demonstrated promising results in terms of TN, BOD, and COD removal, while horizontal flow subsurface CWs were proficient in removal of TP. The performance of the CWs depends upon a various factors, such as hydraulic loading rate, pH, dissolved oxygen, temperature, etc. Among these, low temperature had the most antagonistic effect on the performance of the CWs because freezing ambient temperature lead to ice formation, hydraulic imperfections, malfunctioning of biotic and abiotic components, etc. Over the past three decades, thousands of studies have been conducted involving treatment of wastewater using CWs, among which only few have addressed the issues and concerns of cold climate representing a significant research gap in this field. Furthermore, the performance of CWs in terms of TN, TP, and COD removal was significantly lower in cold climates than that in tropical and sub-tropical climates. In order to find suitable remedies to overcome the challenges faced in cold climate various modifications, such as incorporating greenhouse structure, providing insulating materials, bio-augmentation, identification of suitable macrophytes, etc., in around 20 different scenarios have been studied. Greenhouse construction led to 20% increase in removal of TN and COD, while plant collocation accounted for up to 18% increase in the removal of COD. Artificial aeration, insulation and bio-augmentation also enhanced the performance of the CWs in low temperatures.


Cold Climate , Wetlands , Nitrogen , Temperature , Waste Disposal, Fluid , Wastewater/analysis
9.
J Environ Chem Eng ; 9(2): 104812, 2021 Apr.
Article En | MEDLINE | ID: mdl-33251108

The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.

10.
J Environ Manage ; 272: 111057, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32854876

Petroleum refinery and petrochemical plants (PRPP) are one of the major contributors to toxic and recalcitrant organic polluted water, which has become a significant concern in the field of environmental engineering. Several contaminants of PRPP wastewater are genotoxic, phytotoxic, and carcinogenic, thereby imposing detrimental effects on the environment. Many biological processes were able to achieve chemical oxygen demand (COD) removal ranging from 60% to 90%, and their retention time usually ranged from 10 to 100 days. These methods were not efficient in removing the petroleum hydrocarbons present in PRPP wastewater and produced a significant amount of oily sludge. Advanced oxidation processes achieved the same COD removal efficiency in a few hours and were able to break down recalcitrant organic compounds. However, the associated high cost is a significant drawback concerning PRPP wastewater treatment. In this context, constructed wetlands (CWs) could effectively remove the recalcitrant organic fraction of the wastewater because of the various inherent mechanisms involved, such as phytodegradation, rhizofiltration, microbial degradation, sorption, etc. In this review, we found that CWs were efficient in handling large quantities of high strength PRPP wastewater exhibiting average COD removal of around 80%. Horizontal subsurface flow CWs exhibited better performance than the free surface and floating CWs. These systems could also effectively remove heavy oil and recalcitrant organic compounds, with an average removal efficiency exceeding 80% and 90%, respectively. Furthermore, modifications by varying the aeration system, purposeful hybridization, and identifying the suitable substrate led to the enhanced performance of the systems.


Petroleum , Water Purification , Biodegradation, Environmental , Waste Disposal, Fluid , Wastewater/analysis , Wetlands
11.
Environ Res ; 176: 108542, 2019 09.
Article En | MEDLINE | ID: mdl-31387068

Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.


Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , Environmental Restoration and Remediation , Oxidation-Reduction , Ozone , Waste Disposal, Fluid , Wastewater
...