Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
2.
Cell Death Dis ; 10(6): 442, 2019 06 05.
Article En | MEDLINE | ID: mdl-31165725

We previously demonstrated that avian influenza A H7N9 virus preferentially infected CD14+ monocyte in human peripheral blood mononuclear cells (PBMCs), which led to apoptosis. To better understand H7N9 pathogenesis in relation to monocyte cell death, we showed here that extensive phosphorylation of mixed lineage kinase domain-like (MLKL) protein occurred concurrently with the activation of caspases-8, -9 and -3 in H7N9-infected monocytes at 6 h post infection (hpi), indicating that apoptosis and necroptosis pathways were simultaneously activated. The apoptotic morphology was readily observed in H7N9-infected monocytes with transmission electron microscopy (TEM), while the pan-caspase inhibitor, IDN6556 (IDN), accelerated cell death through necroptosis as evidenced by the increased level of pMLKL accompanied with cell swelling and plasma membrane rupture. Most importantly, H7N9-induced cell death could only be stopped by the combined treatment of IDN and necrosulfonamide (NSA), a pMLKL membrane translocation inhibitor, but not by individual inhibition of caspase or RIPK3. Our data further showed that activation of apoptosis and necroptosis pathways in monocytes differentially contributed to the immune response of monocytes upon H7N9 infection. Specifically, caspase inhibition significantly enhanced, while RIPK3 inhibition reduced the early expression of type I interferons and cytokine/chemokines in H7N9-infected monocytes. Moreover, culture supernatants from IDN-treated H7N9-infected monocyte promoted the expression of co-stimulatory molecule CD80, CD83 and CD86 on freshly isolated monocytes and monocyte-derived dendritic cells (MDCs) and enhanced the capacity of MDCs to induce CD3+ T-cell proliferation in vitro. In contrast, these immune stimulatory effects were abrogated by using culture supernatants from H7N9-infected monocyte with RIPK3 inhibition. In conclusion, our findings indicated that H7N9 infection activated both apoptosis and necroptosis in monocytes. An intact RIPK3 activity is required for upregulation of innate immune responses, while caspase activation suppresses the immune response.


Apoptosis/immunology , Influenza A Virus, H7N9 Subtype/immunology , Monocytes/immunology , Monocytes/virology , Necroptosis/immunology , Acrylamides/pharmacology , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Apoptosis/drug effects , Caspase 8/metabolism , Caspase 9/metabolism , Caspase Inhibitors/pharmacology , Cytokines/metabolism , Dendritic Cells/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Interferon Type I/metabolism , Monocytes/drug effects , Monocytes/ultrastructure , Necroptosis/drug effects , Phosphorylation , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sulfonamides/pharmacology , T-Lymphocytes/immunology
3.
Emerg Infect Dis ; 25(3): 425-433, 2019 03.
Article En | MEDLINE | ID: mdl-30789146

Hepatitis E virus (HEV) genotype 4 (HEV-4) is an emerging cause of acute hepatitis in China. Less is known about the clinical characteristics and natural history of HEV-4 than HEV genotype 3 infections in immunocompromised patients. We report transmission of HEV-4 from a deceased organ donor to 5 transplant recipients. The donor had been viremic but HEV IgM and IgG seronegative, and liver function test results were within reference ranges. After a mean of 52 days after transplantation, hepatitis developed in all 5 recipients; in the liver graft recipient, disease was severe and with progressive portal hypertension. Despite reduced immunosuppression, all HEV-4 infections progressed to persistent hepatitis. Four patients received ribavirin and showed evidence of response after 2 months. This study highlights the role of organ donation in HEV transmission, provides additional data on the natural history of HEV-4 infection, and points out differences between genotype 3 and 4 infections in immunocompromised patients.


Genotype , Hepatitis E virus/genetics , Hepatitis E/epidemiology , Hepatitis E/virology , Tissue Donors , Adult , Aged , Child , Disease Outbreaks , Female , Hepatitis E/diagnosis , Hepatitis E/history , Hepatitis E virus/classification , History, 21st Century , Hong Kong/epidemiology , Humans , Immunohistochemistry , Male , Middle Aged , Molecular Typing , Organ Transplantation , Phylogeny , Sequence Analysis, DNA , Serologic Tests
4.
Front Immunol ; 9: 2370, 2018.
Article En | MEDLINE | ID: mdl-30369932

Current influenza vaccines have relatively low effectiveness, especially against antigenically drifted strains, the effectiveness is even lower in the elderly and immunosuppressed individuals. We have previously shown in a randomized clinical trial that the topical application of a toll-like receptor 7 agonist, imiquimod, just before intradermal influenza vaccine could expedite and augment antibody response, including to antigenically-drifted strains. However, the mechanism of this vaccine and imiquimod combination approach is poorly understood. Here, we demonstrated that imiquimod alone directly activated purified mouse peritoneal B cells. When combined with inactivated H1N1/415742Md influenza virus particle (VP) as vaccine, co-stimulation of mouse peritoneal B cells in vitro induced stronger activation, proliferation, and production of virus-antigen specific IgM and IgG. Intraperitoneal injection of a combination of VP and imiquimod (VCI) was associated with an increased number of activated B cells with enhanced expression of CD86 in the mesenteric draining lymph nodes (mesLN) and the spleen at 18 h after injection. Three days after immunization with VCI, mouse spleen showed significantly more IgM and IgG secreting cells upon in vitro re-stimulation with inactivated virus, mouse sera were detected with viral neutralizing antibody. Transfer of these spleen B cells to naïve mice improved survival after lethal dose of H1N1/415742Md challenge. More importantly, the functional response of VCI-induced B cell activation was demonstrated by early challenge with a lethal dose of H1N1/415742Md influenza virus at 3 days after immunization. The spleen and mediastinal lymph nodes (mdLN) in mice immunized with VCI had germinal center formation, and significantly higher number of plasmablasts, plasma cells, and virus-antigen specific IgM and IgG secreting cells at only 3-4 days post virus challenge, compared with those of mice that have received imiquimod, inactivated virus alone or PBS. Serum virus-specific IgG2a, IgG2b, and IgG1 and bronchoalveolar lavage fluid (BALF) virus-specific IgA at 3 or 4 days post challenge were significantly higher in mice immunized with VCI, which had significantly reduced lung viral load and 100% survival. These findings suggested that imiquimod accelerates the vaccine-induced antibody production via inducing rapid differentiation of naïve B cells into antigen-specific antibody producing cells.


Antibody Formation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Influenza A virus/immunology , Lymphocyte Activation/immunology , Toll-Like Receptor 7/metabolism , Animals , Antibodies, Viral/immunology , Antigens/immunology , Apoptosis , Cell Differentiation/immunology , Female , Humans , Immunization , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Spleen/immunology , Spleen/metabolism
5.
Emerg Microbes Infect ; 7(1): 23, 2018 Mar 06.
Article En | MEDLINE | ID: mdl-29511175

The 2017 Hong Kong influenza A(H3N2) summer season was unexpectedly severe. However, antigenic characterization of the 2017 circulating A(H3N2) viruses using ferret antisera did not show significant antigenic drift. We analyzed the hemagglutinin amino acid sequences of A(H3N2) virus circulating in Hong Kong in 2017, and found that viruses with hemagglutinin N121K substitution, which was rare before 2017, emerged rapidly and dominated in 2017 (52.4% of A[H3N2] virus in 2017 contains N121K substitution). Microneutralization assay using archived human sera collected from mid-2017 showed that the geometric mean microneutralization titer was 3.6-fold lower against a 2017 cell culture-grown circulating A(H3N2)-N121K virus (3391/2017 virus) than that against the cell culture-grown 2016-2017 A(H3N2) seasonal influenza vaccine-like vaccine virus (4801/2014 virus) (13.4 vs 41.8, P < 0.0001). Significantly fewer serum specimens had a microneutralization titer of 40 or above against 3391/2017 virus than that against 4801/2014 virus (26.4% vs 60.0%, P < 0.0001). Conversely, the geometric mean hemagglutination inhibition titer was slightly higher against 3391/2017 virus than that against the 4801/2014 virus (96.9 vs 55.4, P < 0.0001). Moreover, 59.1% of specimens had a significantly lower microneutralization antibody titer (≥4-fold) against 3391/2017 virus than that against 4801/2014 virus, but none for hemagglutination titer (P < 0.0001). Similar results of microneutralization and hemagglutination titers were observed for day 21-post-vaccination sera. Hence, the 2017 A(H3N2) summer peak in Hong Kong was associated with a low-microneutralization titer against the circulating virus. Our results support the use of microneutralization assay with human serum in assessing population susceptibility and antigenic changes of A(H3N2) virus. Novel and available immunization approach, such as topical imiquimod followed by intradermal vaccination, to broaden the neutralizing antibody response of influenza vaccine should be considered.


Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/blood , Adolescent , Adult , Aged , Female , Hong Kong/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Middle Aged , Phylogeny , Seasons , Vaccination , Young Adult
6.
J Gen Virol ; 98(5): 922-934, 2017 May.
Article En | MEDLINE | ID: mdl-28555541

Most patients with avian influenza A H7N9 virus (H7N9) infection suffer from severe illness, accompanied by dysregulated cytokine/chemokine response, delayed viral clearance and impaired neutralizing antibody response. Here, we evaluated the role of peripheral blood mononuclear cells (PBMCs) in the pathogenesis of H7N9 infection using an ex vivo infection model. H7N9 infected a significantly higher percentage of PBMCs (23.9 %) than those of avian influenza A H5N1 virus (H5N1) (12.3 %) and pandemic H1N1 virus (pH1N1) (5.5 %) (P<0.01). H7N9 infected significantly more B and T lymphocytes than H5N1. When compared with pH1N1, H7N9-infected PBMCs had significantly higher mRNA levels of proinflammatory cytokines and type I interferons (IFNs) at 6 h post-infection (p.i.), but significantly lower levels of IFN-γ and IP-10 at 12 h p.i. Among the PBMCs, CD14+ monocytes were most permissive to H7N9 infection. The percentage of infected CD14+ monocytes was significantly higher for H7N9 than that of pH1N1, but not significantly different from that of H5N1. H7N9-infected monocytes showed higher expression of MIP-1α, MIP-1ß and RANTES than that of pH1N1 at 6 h p.i. H7N9- but not pH1N1-infected monocytes died rapidly via apoptosis. Furthermore, pH1N1- but not H7N9-infected monocytes showed increased expression of the monocyte activation and differentiation markers. Unlike pH1N1, H7N9 showed similar PBMC/monocyte cytokine/chemokine expression profile, monocyte cell death and expression of activation/differentiation markers to H5N1. Besides proinflammatory cytokine activation leading to a cytokine storm, impaired IFN-γ production, rapid monocytic death and lack of monocyte differentiation may affect the ability of H7N9-infected innate immune cells to recruit protective adaptive immunity.


Apoptosis , Cytokines/metabolism , Influenza A Virus, H7N9 Subtype/growth & development , Influenza A Virus, H7N9 Subtype/immunology , Leukocytes, Mononuclear/virology , Cells, Cultured , Humans , Influenza A Virus, H7N9 Subtype/pathogenicity
...