Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Chromatogr A ; 1722: 464830, 2024 May 10.
Article En | MEDLINE | ID: mdl-38608366

Development of meaningful and reliable analytical assays in the (bio)pharmaceutical industry can often be challenging, involving tedious trial and error experimentation. In this work, an automated analytical workflow using an AI-based algorithm for streamlined method development and optimization is presented. Chromatographic methods are developed and optimized from start to finish by a feedback-controlled modeling approach using readily available LC instrumentation and software technologies, bypassing manual user intervention. With the use of such tools, the time requirement of the analyst is drastically minimized in the development of a method. Herein key insights on chromatography system control, automatic optimization of mobile phase conditions, and final separation landscape for challenging multicomponent mixtures are presented (e.g., small molecules drug, peptides, proteins, and vaccine products) showcased by a detailed comparison of a chiral method development process. The work presented here illustrates the power of modern chromatography instrumentation and AI-based software to accelerate the development and deployment of new separation assays across (bio)pharmaceutical modalities while yielding substantial cost-savings, method robustness, and fast analytical turnaround.


Software , Chromatography, Liquid/methods , Algorithms , Peptides/analysis , Peptides/chemistry , Proteins/analysis , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Artificial Intelligence , Vaccines/chemistry , Vaccines/analysis , Feedback
2.
Anal Chem ; 96(15): 6021-6029, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38557001

Sensitive analytical techniques that are capable of detecting and quantifying disease-associated biomolecules are indispensable in our efforts to understand disease mechanisms and guide therapeutic intervention through early detection, accurate diagnosis, and effective monitoring of disease. Parkinson's Disease (PD), for example, is one of the most prominent neurodegenerative disorders in the world, but the diagnosis of PD has primarily been based on the observation of clinical symptoms. The protein α-synuclein (α-syn) has emerged as a promising biomarker candidate for PD, but a lack of analytical methods to measure complex disease-associated variants of α-syn has prevented its widespread use as a biomarker. Antibody-based methods such as immunoassays and mass spectrometry-based approaches have been used to measure a limited number of α-syn forms; however, these methods fail to differentiate variants of α-syn that display subtle differences in only the sequence and structure. In this work, we developed a cyclic ion mobility-mass spectrometry method that combines multiple stages of activation and timed ion selection to quantify α-syn variants using both mass- and structure-based measurements. This method can allow for the quantification of several α-syn variants present at physiological levels in biological fluid. Taken together, this approach can be used to galvanize future efforts aimed at understanding the underlying mechanisms of PD and serves as a starting point for the development of future protein-structure-based diagnostics and therapeutic interventions.


Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Biomarkers/analysis , Mass Spectrometry , Antibodies
3.
Anal Chem ; 96(11): 4693-4701, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38442211

The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 µm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening.

4.
Anal Chem ; 95(46): 17028-17036, 2023 11 21.
Article En | MEDLINE | ID: mdl-37943345

High-throughput screening (HTS) workflows are revolutionizing many fields, including drug discovery, reaction discovery and optimization, diagnostics, sensing, and enzyme engineering. Liquid chromatography (LC) is commonly deployed during HTS to reduce matrix effects, distinguish isomers, and preconcentrate prior to detection, but LC separation time often limits throughput. Although subsecond LC separations have been demonstrated, they are rarely utilized during HTS due to limitations associated with the speed of common autosamplers. In this work, these limits are overcome by utilizing droplet microfluidics for sample introduction. In the method, a train of samples segmented by air are continuously pumped into the inlet of an LC injection valve that is actuated once each sample fills the sample loop. Coupled with 2.1 mm diameter × 5 mm long columns packed with 2.7 µm superficially porous C18 particles operated at 5 mL/min, the injector enabled separation of 3 components at 1 s/sample and analysis of a 96-well plate in 1.6 min with <2% peak area relative standard deviation. Analyte-dependent carryover was minimized by including wash droplets composed of organic solvent in between sample droplets. High-throughput LC coupled with mass spectrometric detection using the segmented flow injector was applied to a screen of inhibitors of a cytochrome P450-catalyzed hydroxylation reaction. Measurements of the reaction substrate and product concentrations made using fast LC with the segmented flow injector correlated well with measurements made using a more conventional, 3 min LC method. These results demonstrate the potential for droplet microfluidics to be used for sample introduction during high-throughput LC analysis.


Microfluidics , Chromatography, Liquid/methods , Mass Spectrometry/methods
5.
Anal Chem ; 93(33): 11532-11539, 2021 08 24.
Article En | MEDLINE | ID: mdl-34375071

Continued adoption of two-dimensional liquid chromatography (2D-LC) in industrial laboratories will depend on the development of approaches to make method development for 2D-LC more systematic, less tedious, and less reliant on user expertise. In this paper, we build on previous efforts in these directions by describing the use of multifactorial modeling software that can help streamline and simplify the method development process for 2D-LC. Specifically, we have focused on building retention models for second dimension (2D) separations involving variables including gradient time, temperature, organic modifier blending, and buffer concentration using LC simulator (ACD/Labs) software. Multifactorial retention modeling outcomes are illustrated as resolution map planes or cubes that enable straightforward location of 2D conditions that maximize resolution while minimizing analysis time. We also illustrate the practicality of this approach by identifying conditions that yield baseline separation of all compounds co-eluting from a first dimension (1D) separation using a single combination of 2D stationary phase and elution conditions. The multifactorial retention models were found to be very accurate for both the 1D and 2D separations, with differences between experimental and simulated retention times of less than 0.5%. Pharmaceutical applications of this approach for multiple heartcutting 2D-LC were demonstrated using IEC-IEC or achiral RPLC-chiral RPLC for 2D separations of multicomponent mixtures. The framework outlined here should help make 2D-LC method development more systematic and streamline development and optimization for a variety of 2D-LC applications in both industry and academia.


Chromatography, Liquid , Computer Simulation
6.
Anal Chem ; 93(2): 964-972, 2021 01 19.
Article En | MEDLINE | ID: mdl-33301312

Recent developments in two-dimensional liquid chromatography (2D-LC) now make separation and analysis of very complex mixtures achievable. Despite being such a powerful chromatographic tool, current 2D-LC technology requires a series of arduous method development activities poorly suited for a fast-paced industrial environment. Recent introductions of new technologies including active solvent modulation and a support for multicolumn 2D-LC are helping to overcome this stigma. However, many chromatography practitioners believe that the lack of a systematic way to effectively optimize 2D-LC separations is a missing link in securing the viability of 2D-LC as a mainstay for industrial applications. In this work, a computer-assisted modeling approach that dramatically simplifies both offline and online 2D-LC method developments is introduced. Our methodology is based on mapping the separation landscape of pharmaceutically relevant mixtures across both first (1D) and second (2D) dimensions using LC Simulator (ACD/Labs) software. Retention models for 1D and 2D conditions were built using a minimal number of multifactorial modeling experiments (2 × 2 or 3 × 3 parameters: gradient slope, column temperature, and different column and mobile phase combinations). The approach was first applied to online 2D-LC analysis involving achiral and chiral separations of complex mixtures of enantiomeric species. In these experiments, the retention models proved to be quite accurate for both the 1D and 2D separations, with retention time differences between experiments and simulations of less than 3.5%. This software-based concept was also demonstrated for offline 2D-LC purification of drug substances.


Computer-Aided Design , Pharmaceutical Preparations/analysis , Chromatography, Liquid , Models, Molecular , Molecular Structure
...