Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
2.
Sci Total Environ ; 765: 144176, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-33385807

The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to ß-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Kozieglowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.


Methicillin-Resistant Staphylococcus aureus , Wastewater , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents , Genes, Bacterial , Glycopeptides , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Poland , Staphylococcus aureus , beta-Lactams
3.
Cancers (Basel) ; 12(2)2020 Jan 27.
Article En | MEDLINE | ID: mdl-32012719

Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo. Further, serially passaged pEOCs become senescent after a few divisions. These senescent cultures display trace proliferation, high expression of senescence biomarkers (SA--Gal, -H2A.X), growth-arrest in the G1 phase, increased level of cyclins D1, D2, decreased cyclin B1, up-regulated p16, p21, and p53 proteins, eroded telomeres, reduced activity of telomerase, predominantly non-telomeric DNA damage, activated AKT, AP-1, and ERK1/2 signaling, diminished JNK, NF-B, and STAT3 pathways, increased formation of reactive oxygen species, unchanged activity of antioxidants, increased oxidative damage to DNA and proteins, and dysfunctional mitochondria. Moreover, pEOC senescence is inducible by normal peritoneal mesothelium, fibroblasts, and malignant ascites via the paracrine activity of GRO-1, HGF, and TGF-1. Collectively, pEOCs undergo spontaneous senescence in a mosaic, telomere-dependent and telomere-independent manner, plausibly in an oxidative stress-dependent mechanism. The process may also be activated by extracellular stimuli. The biological and clinical significance of pEOC senescence remains to be explored.

4.
Sci Total Environ ; 716: 137022, 2020 May 10.
Article En | MEDLINE | ID: mdl-32059297

The prevalence of integrons and antibiotic resistance genes (ARGs) is a serious threat for public health in the new millennium. Although commonly detected in sites affected by strong anthropogenic pressure, in remote areas their occurrence, dissemination, and transfer to other ecosystems is poorly recognized. Remote sites are considered as a benchmark for human-induced contamination on Earth. For years glaciers were considered pristine, now they are regarded as reservoirs of contaminants, thus studies on contamination of glaciers, which may be released to other ecosystems, are highly needed. Therefore, in this study we evaluated the occurrence and frequency of clinically relevant ARGs and resistance integrons in the genomes of culturable bacteria and class 1 integron-integrase gene copy number in the metagenome of cryoconite, ice and supraglacial gravel collected on two Arctic (South-West Greenland and Svalbard) and two High Mountain (the Caucasus) glaciers. Altogether, 36 strains with intI1 integron-integrase gene were isolated. Presence of class 1 integron-integrase gene was also recorded in metagenomic DNA from all sampling localities. The mean values of relative abundance of intI1 gene varied among samples and ranged from 0.7% in cryoconite from Adishi Glacier (the Caucasus) to 16.3% in cryoconite from Greenland. Moreover, antibiotic-resistant strains were isolated from all regions. Genes conferring resistance to ß-lactams (blaSHV, blaTEM, blaOXA, blaCMY), fluoroquinolones (qepA, qnrC), and chloramphenicol (cat, cmr) were detected in the genomes of bacterial isolates.


Ice Cover , Anti-Bacterial Agents , Arctic Regions , Drug Resistance, Microbial , Ecosystem , Greenland , Integrons , Svalbard
5.
Water Res ; 170: 115277, 2020 Mar 01.
Article En | MEDLINE | ID: mdl-31756613

The emergence and spread of resistance to antibiotics among bacteria is the most serious global threat to public health in recent and coming decades. In this study, we characterized qualitatively and quantitatively ß-lactamase and carbapenemase genes in the wastewater resistome of Central Wastewater Treatment Plant in Kozieglowy, Poland. The research concerns determination of the frequency of genes conferring resistance to ß-lactam and carbapenem antibiotics in the genomes of culturable bacteria, as well as in the wastewater metagenome at three stages of treatment: raw sewage, aeration tank, and final effluent. In the final effluent we found bacteria with genes that pose the greatest threat to public health, including genes of extended spectrum ß-lactamases - blaCTX-M, carbapenemases - blaNDM, blaVIM, blaGES, blaOXA-48, and showed that during the wastewater treatment their frequency increased. Moreover, the wastewater treatment process leads to significant increase in the relative abundance of blaTEM and blaGES genes and tend to increase the relative abundance of blaCTX-M, blaSHV and blaOXA-48 genes in the effluent metagenome. The biodiversity of bacterial populations increased during the wastewater treatment and there was a correlation between the change in the composition of bacterial populations and the variation of relative abundance of ß-lactamase and carbapenemase genes. PCR-based quantitative metagenomic analysis combined with analyses based on culture methods provided significant information on the routes of ARBs and ARGs spread through WWTP. The limited effectiveness of wastewater treatment processes in the elimination of antibiotic-resistant bacteria and resistance genes impose the need to develop an effective strategy and implement additional methods of wastewater disinfection, in order to limit the increase and the spread of antibiotic resistance in the environment.


Metagenome , Wastewater , Anti-Bacterial Agents , Bacterial Proteins , Poland , beta-Lactamases
6.
Folia Microbiol (Praha) ; 61(2): 143-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26253583

Coagulase-negative staphylococci (CoNS) are the most frequently isolated bacteria from the blood and the predominant cause of nosocomial infections. Macrolides, lincosamides and streptogramin B (MLSB) antibiotics, especially erythromycin and clindamycin, are important therapeutic agents in the treatment of methicillin-resistant staphylococci infections. Among CoNS, Staphylococcus hominis represents the third most common organism. In spite of its clinical significance, very little is known about its mechanisms of resistance to antibiotics, especially MLSB. Fifty-five S. hominis isolates from the blood and the surgical wounds of hospitalized patients were studied. The erm(C) gene was predominant in erythromycin-resistant S. hominis isolates. The methylase genes, erm(A) and erm(B), were present in 15 and 25% of clinical isolates, respectively. A combination of various erythromycin resistance methylase (erm) genes was detected in 15% S. hominis isolates. The efflux gene msr(A) was detected in 18% of isolates, alone in four isolates, and in different combinations in a further six. The lnu(A) gene, responsible for enzymatic inactivation of lincosamides was carried by 31% of the isolates. No erythromycin resistance that could not be attributed to the genes erm(A), erm(B), erm(C) and msr(A) was detected. In S. hominis, 75 and 84%, respectively, were erythromycin resistant and clindamycin susceptible. Among erythromycin-resistant S. hominis isolates, 68% of these strains showed the inducible MLSB phenotype. Four isolates harbouring the msr(A) genes alone displayed the MSB phenotype. These studies indicated that resistance to MLSB in S. hominis is mostly based on the ribosomal target modification mechanism mediated by erm genes, mainly the erm(C), and enzymatic drug inactivation mediated by lnu(A).


Anti-Bacterial Agents/pharmacology , Lincosamides/pharmacology , Macrolides/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus hominis/drug effects , Streptogramins/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Microbial Sensitivity Tests , Staphylococcus hominis/classification , Staphylococcus hominis/enzymology , Staphylococcus hominis/genetics
7.
Chemosphere ; 144: 1665-73, 2016 Feb.
Article En | MEDLINE | ID: mdl-26519797

Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.


Bacterial Proteins/genetics , Drug Resistance, Bacterial , Genome, Bacterial , Integrases/genetics , Sulfonamides/pharmacology , Tetracycline/pharmacology , Bacterial Proteins/metabolism , Integrases/metabolism , Integrons , Sequence Analysis, DNA , Tetracycline Resistance , Waste Disposal, Fluid , Wastewater/microbiology
8.
Curr Microbiol ; 72(1): 64-7, 2016 Jan.
Article En | MEDLINE | ID: mdl-26424139

The paper presents first description of class 1 integron in an environmental strain of Rahnella aquatilis, a rarely isolated Gram-negative bacterium of the family Enterobacteriaceae. The strain was isolated from the Warta river water, Poland. Class 1 integrase gene was detected by a PCR assay. Sequencing of the integron's variable region showed the presence of a dfrA1-aadA1 gene cassette array. The integron was located in a 54-kbp plasmid that was transferable to Escherichia coli J-53 recipient strain in a conjugation assay. The integron-bearing R. aquatilis strain was resistant to aminoglycosides, penicillins, trimethoprim, sulfamethoxazole, and trimethoprim/sulfamethoxazole. This paper confirms that water environment play a major role in the spread of integrons and, consequently, antimicrobial resistance, among bacteria of various genera.


Integrons , Rahnella/genetics , Rahnella/isolation & purification , Rivers/microbiology , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Escherichia coli/genetics , Gene Transfer, Horizontal , Plasmids/analysis , Poland , Polymerase Chain Reaction , Rahnella/drug effects
...