Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(19): 25529-25539, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698765

RESUMEN

Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals show promise as scintillating materials for wide-energy radiation detection, outperforming their three-dimensional counterparts. In this study, we synthesized single crystals of (PEA2-xBZAx)PbBr4 (x ranging from 0.1 to 2), utilizing phenethylammonium (C6H5CH2CH2NH3+) and benzylammonium (C6H5CH2NH3+) cations. These materials exhibit favorable optical and scintillation properties, rendering them suitable for high light yield (LY) and fast-response scintillators. Our investigation, employing various techniques such as X-ray diffraction (XRD), photoluminescence (PL), time-resolved (TR) PL, Raman spectroscopy, radioluminescence (RL), thermoluminescence (TL), and scintillation measurements, unveiled lattice strain induced by dual-organic cations in powder X-ray diffraction. Density functional theory analysis demonstrated a maximal 0.13 eV increase in the band gap with the addition of BZA cation addition. Notably, the largest Stokes shift of 0.06 eV was observed in (BZA)2PbBr4. The dual-organic cation crystals displayed >80% fast component scintillation decay time, which is advantageous for the scintillating process. Furthermore, we observed a dual-organic cations-induced enhancement of electron-hole transfer efficiency by up to 60%, with a contribution of >70% to the fast component of scintillation decay. The crystal with the lowest BZA concentration, (PEA1.9BZA0.1)PbBr4, demonstrated the highest LYs of 14.9 ± 1.5 ph/keV at room temperature. Despite a 55-70% decrease in LY for BZA concentrations >5%, simultaneous reductions in scintillation decay time (12-32%) may work for time-of-flight positron emission tomography and photon-counting computed tomography. Our work underscores the crucial role of dual-organic cations in advancing our understanding of 2D-HOIP crystals for materials science and radiation detection applications.

2.
J Phys Chem Lett ; 15(14): 3713-3720, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38546293

RESUMEN

The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.

3.
Opt Express ; 31(18): 29596-29605, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710756

RESUMEN

Off-axis projection is a common practice for reconstructions of Fourier holograms displayed on liquid crystal on silicon (LCoS) spatial light modulators (SLMs), as it spatially separates the image from the undiffracted light. Binary gratings encoded within the holograms enable maximum angular separation. However, as a result, two mirror images of equal intensities are present in the reconstruction. To introduce asymmetry to the intensity distribution and suppress one of those images, we propose a phase mask with a subpixel pattern. Presented results prove the potential of in-built SLM phase-mask layers for optimizing efficiency of the off-axis holographic projection.

4.
J Phys Chem C Nanomater Interfaces ; 127(22): 10737-10747, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37313122

RESUMEN

Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.

5.
Inorg Chem ; 62(23): 8892-8902, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37236171

RESUMEN

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BA2PbBr4 and PEA2PbBr4. We observe that doping the perovskite crystals with Rb ions leads to an expansion of the crystal lattices of the materials, which also leads to narrowing of band gaps down to 84% of the pure compounds. Rb doping of BA2PbBr4 and PEA2PbBr4 shows a broadening in the photoluminescence and scintillation emissions of both perovskite crystals. Rb doping also leads to faster γ-ray scintillation decay times, as fast as 4.4 ns, with average decay time decreases of 15% and 8% for Rb-doped BA2PbBr4 and PEA2PbBr4, respectively, compared to those of undoped crystals. The inclusion of Rb ions also leads to a slightly longer afterglow, with residual scintillation still being below 1% after 5 s at 10 K, for both undoped and Rb-doped perovskite crystals. The light yield of both perovskites is significantly increased by Rb doping with improvements of 58% and 25% for BA2PbBr4 and PEA2PbBr4, respectively. This work shows that Rb doping leads to a significant enhancement of the 2D-HOIP crystal performance, which is of particular significance for high light yield and fast timing applications, such as photon counting or positron emission tomography.

6.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850604

RESUMEN

In this paper, an original construction of a vehicle vibration damper controlled by means of a valve based on piezoelectric actuator is presented and investigated. The presented valve allows us to control dissipation characteristics of the damper faster than in other solutions adjusting the size of the gap through which the oil flows between the chambers of the damper. The article also presents the results of the experimental investigation of the above-mentioned damper showing the possibility of changing the value of the damping force five times in about 10 ms by changing the voltage supplying the piezoelectric actuator. Based on these results, dissipative characteristics were determined which enabled the identification of the parameters of the damper numerical model. The article also presents the results of numerical investigations a vehicle model equipped with the developed dampers. The results showed that the developed damper controlled by the use of the piezoelectric actuator can significantly affect vehicle traffic safety by reducing the variation of vertical forces acting on the wheels. The results obtained are so promising that the authors undertook preparations to conduct road tests of a vehicle equipped with the developed dampers.

7.
Opt Express ; 30(14): 25830-25841, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237104

RESUMEN

Remote positioning by precise measurements of lateral displacements of laser beams at large distances is inevitably disturbed by the influence of atmospheric turbulences. Here we propose the use of optical vortices, which exhibit lower transversal variations at an experimentally validated range of 100 meters. We show the higher precision of the localization of vortex points as compared with standard centroid-based assessment of Gaussian beams. Numerical simulations and experimental measurements show further improvements by averaging of the positions of up to four secondary vortices forming a stable constellation when higher values of the topological charges are used.

8.
Opt Express ; 30(20): 36564-36575, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258582

RESUMEN

Recently, holographic displays have gained attention owing to their natural presentation of three-dimensional (3D) images; however, the enormous amount of computation has hindered their applicability. This study proposes an oriented-separable convolution accelerated using the wavefront-recording plane (WRP) method and recurrence formulas. We discuss the orientation of 3D objects that affects computational efficiency, which is overcome by reconsidering the orientation, and the suitability of the proposed method for hardware implementations.

9.
Opt Express ; 30(5): 7821-7830, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299536

RESUMEN

Layer-based hologram calculations generate holograms from RGB and depth images by repeating diffraction calculations using complex Fourier transforms (FTs). Holograms generated as such are suitable for near-eye display and can be easily reconstructed with good image quality, but they are computationally expensive because of multiple complex-valued operations, including complex FTs. In this study, we propose an acceleration method for layer-based hologram calculations by reducing time-consuming complex-valued operations using the real-valued FT and Hartley transform as real linear transformations. Real linear transformations transform real input data to real output data; thus, the proposed method generates amplitude holograms. Thus, we also propose a technique to convert holograms generated by real linear transformations into phase-only holograms using the half-zone plate process and digitalized single-sideband method while maintaining the calculation acceleration. The proposed method can speed up hologram calculations by a factor of around three while maintaining the same image quality as the conventional method.

10.
ACS Appl Mater Interfaces ; 13(49): 59450-59459, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34855346

RESUMEN

CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.

11.
Opt Express ; 29(24): 40259-40273, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809371

RESUMEN

Holographic projectors and near-eye displays are a promising technology with truly three-dimensional, natural viewing and excellent energetic efficiency. Spatial light modulators with periodic pixel matrices cause image duplicates, which distract the viewer and waste energy of the playback beam. We present the engineering of the far field intensity envelope, which suppresses higher-order image duplicates in the simplest possible optical setup by physically changing the shape of modulator pixels with attached apodizing masks. Numerical and experimental results show the limited number of perceived duplicates and better uniformity in off-axis projections for the price of compromised energetic efficiency due to amplitude masks.

12.
Appl Opt ; 60(28): 8829-8837, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613109

RESUMEN

Holograms are computed by superimposing point spread functions (PSFs), which represent the distribution of light on the hologram plane. The computational cost and the spatial bandwidth product required to generate holograms are significant; therefore, it is challenging to compute high-resolution holograms at the rates required for videos. Among the possible displays, fixed-eye-position holographic displays, such as holographic head-mounted displays, reduce the spatial bandwidth product by fixing eye positions while satisfying almost all human depth cues. In eye-fixed holograms, by calculating a part distribution of the entire PSF, we observe reconstructed images that maintain the image quality and the depth of focus almost as high as those generated by the entire PSF. In this study, we accelerate the calculation of eye-fixed holograms by engineering the PSFs. We propose cross and radial PSFs, and we determine that, out of the two, the radial PSFs have a better image quality. By combining the look-up table method and the wavefront-recording plane method with radial PSFs, we show that the proposed method can rapidly compute holograms.

13.
Sensors (Basel) ; 21(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069988

RESUMEN

In this work an original construction of a vibration damper controlled by means of a valve with a short time of operation lag is presented. The valve-controlling properties of the damper regulates the flow of fluid between the chambers of the damper and was constructed using piezoelectric actuators, whose characteristic feature is the possibility to change dimensions, e.g., length, under the influence of voltage. As a result, by changing voltage it is possible to control the throttle of the flow by changing the width of a gap, which influences a change of damping forces. Such a solution enables a quicker change of damping forces than in other kinds of controlled damper. Due to the obtained properties, the damper may be applied to reduce the vibrations of vehicles and machines that undergo quick-change loads. In the article, the results of experimental studies of the aforementioned damper are presented. Based on the results, dissipative characteristics were determined. Also, results of numerical studies comprising the development of a numerical model of a controlled piezoelectric damper are shown. Results of numerical studies, as well as experimental studies, are presented in the form of dissipative characteristics. Comparison of results of numerical and experimental studies confirms the possibility to apply this kind of construction in semi-active systems of vibration reduction of vehicles and machines.

14.
RSC Adv ; 11(34): 20635-20640, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35479341

RESUMEN

We report the optical and scintillation properties of (C6H5CH2NH3)2SnBr4 with excellent absorption length at 20 keV of 0.016 cm, measured bandgap of 2.51 eV, and photoluminescence lifetime of 1.05 µs. The light yield obtained with the 241Am source is 3600 ± 600 photons per MeV, which is much smaller than the maximum attainable light yield obtained from the bandgap. Temperature dependent radioluminescence measurements confirm the presence of thermal quenching at room temperature with the activation energy and the ratio between the attempt and the radiative transition rates of 61 meV and 129, respectively. Although thermal quenching affects light yield at room temperature, this green light-emitting perovskite opens an avenue for new lead-free scintillating materials.

15.
Opt Lett ; 45(18): 5177-5180, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932482

RESUMEN

Reconstructions from computer-generated holograms exhibit spurious duplicate images corresponding to higher diffractive orders, originating from the periodic pixels of a spatial light modulator. We explore the possibility of reducing their visibility by randomization of pixel positions at the stage of displaying of the holograms. Experimental validation is shown on a liquid crystal modulator and also in a promising photo-magnetic transparent cobalt-doped yttrium iron garnet, which exhibits spontaneous randomization of written patterns. Micromirror-driven raster scanning of femtosecond pulses is used for point-by-point rewriting of magnetic domains. Recorded holographic patterns diffract visible light beams in accordance with theory and numerical simulations.

16.
Opt Express ; 27(14): 19270-19281, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31503689

RESUMEN

Image projection by holographic allows efficient and compact optical setups; nevertheless, the limited throw angle and 1:1 image aspect ratio are impractical. We present the method to increase the diffractive angle of a spatial light modulator in one and two directions by introducing the highly 2-dimensionally tilted illuminating beam. The inevitable image aberrations, such as astigmatism, for off-axis imaging are corrected by proper modifications of the phase patterns on the modulator. Experimental results show the image aspect ratio of 2.4:1 suitable for human vision, with sustained image contrast and noise level. Study of the experimental diffractive efficiency is also presented.

17.
ACS Nano ; 13(9): 10154-10160, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31433620

RESUMEN

Composite structures exhibiting a periodic arrangement of building blocks can be found in natural systems at different length scales. Recreating such systems in artificial composites using the principles of self-assembly has been a great challenge, especially for 1D microscale systems. Here, we present a purposely designed composite material consisting of gold nanoparticles and a nematic liquid crystal matrix that has the ability to self-create a periodic structure in the form of a one-dimensional photonic lattice through a phase separation process occurring in a confined space. Our strategy is based on the use of a thermoswitchable medium that reversibly and quickly responds to both heating and cooling. We find that the period of the structure is strongly related to the size of the confining space. We believe that our findings will allow us to not only better understand the phase separation process in multicomponent soft/colloid mixtures with useful optical properties but also improve our understanding of the precise assembly of advanced materials into one-dimensional periodic systems, with prospective applications in future photonic technologies.

18.
Opt Lett ; 44(12): 3038-3041, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199375

RESUMEN

This Letter aims to propose a dynamic-range compression and decompression scheme for digital holograms that uses a deep neural network (DNN). The proposed scheme uses simple thresholding to compress the dynamic range of holograms with 8-bit gradation to binary holograms. Although this can decrease the amount of data by one-eighth, the binarization strongly degrades the image quality of the reconstructed images. The proposed scheme uses a DNN to predict the original gradation holograms from the binary holograms, and the error-diffusion algorithm of the binarization process contributes significantly to training the DNN. The performance of the scheme exceeds that of modern compression techniques such as JPEG 2000 and high-efficiency video coding.

19.
Opt Express ; 27(7): 10193-10207, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045164

RESUMEN

Holographic phase-only projection technique utilizing spatial light modulators (SLM) as an active element may be intended to work in environments in which the temperature changes with time, such as outdoors or automotive applications. In order to achieve maximum possible resolution, the thermally induced aberrations of the SLM must be corrected in real time. We present the results of non-invasive determination of the SLM aberrations in holographic image projection, caused mostly by thermal strains of SLM, with the use of one fixed camera detector and iterative phase retrieval. We show real-time wavefront correction leading to experimentally proven, diffraction-limited image quality in a wide range of SLM temperatures.

20.
Appl Opt ; 58(5): A156-A160, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30873973

RESUMEN

A fully functional miniaturized projection head below 5 cm3 is presented, using computer-generated holograms dynamically displayed on a liquid-crystal spatial light modulator. Spatial division of the modulator is used for color projection without color breakup, and specially designed, anti-reflection coated prisms ensure simple light paths with small losses. Real-time calculations are performed on a remote server with on-the-fly compression of holographic fringes. Cloud computing allows 1 W of local electrical power usage and apparent image brightness equivalent to 15-500 lm/W efficiency, depending on the displayed content. The properties of the projector allow future applications in handheld displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...