Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Adv Mater ; 34(2): e2106426, 2022 Jan.
Article En | MEDLINE | ID: mdl-34647655

Since their discovery in late 1940s, perovskite ferroelectric materials have become one of the central objects of condensed matter physics and materials science due to the broad spectrum of functional behaviors they exhibit, including electro-optical phenomena and strong electromechanical coupling. In such disordered materials, the static properties of defects such as oxygen vacancies are well explored but the dynamic effects are less understood. In this work, the first observation of enhanced electromechanical response in BaTiO3 thin films is reported driven via dynamic local oxygen vacancy control in piezoresponse force microscopy (PFM). A persistence in peizoelectricity past the bulk Curie temperature and an enhanced electromechanical response due to a created internal electric field that further enhances the intrinsic electrostriction are explicitly demonstrated. The findings are supported by a series of temperature dependent band excitation PFM in ultrahigh vacuum and a combination of modeling techniques including finite element modeling, reactive force field, and density functional theory. This study shows the pivotal role that dynamics of vacancies in complex oxides can play in determining functional properties and thus provides a new route toward- achieving enhanced ferroic response with higher functional temperature windows in ferroelectrics and other ferroic materials.

2.
Nanoscale Adv ; 2(5): 2063-2072, 2020 May 19.
Article En | MEDLINE | ID: mdl-36132496

With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machine-learning methodologies, from unsupervised classification of the origins of hysteretic response via linear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis.

3.
Sci Rep ; 7(1): 16619, 2017 11 30.
Article En | MEDLINE | ID: mdl-29192283

Multi-material systems interfaced with 2D materials, or entirely new 3D heterostructures can lead to the next generation multi-functional device architectures. Physical and chemical control at the nanoscale is also necessary tailor these materials as functional structures approach physical limit. 2D transition metal thiophosphates (TPS), with a general formulae Cu1-xIn1+x/3P2S6, have shown ferroelectric polarization behavior with a T c above the room temperature, making them attractive candidates for designing both: chemical and physical properties. Our previous studies have demonstrated that ferroic order persists on the surface, and that spinoidal decomposition of ferroelectric and paraelectric phases occurs in non-stoichiometric Cu/In ratio formulations. Here, we discuss the chemical changes induced by helium ion irradiation. We explore the TPS compound library with varying Cu/In ratio, using Helium Ion Microscopy, Atomic Force Microscopy (AFM), and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS). We correlate physical nano- and micro- structures to the helium ion dose, as well as chemical signatures of copper, oxygen and sulfur. Our ToF-SIMS results show that He ion irradiation leads to oxygen penetration into the irradiated areas, and diffuses along the Cu-rich domains to the extent of the stopping distance of the helium ions.

4.
ACS Appl Mater Interfaces ; 9(40): 35125-35132, 2017 Oct 11.
Article En | MEDLINE | ID: mdl-28933531

Amorphous indium gallium zinc oxide (a-IGZO) is a transparent semiconductor which has demonstrated excellent electrical performance as thin-film transistors (TFTs). However, a high-temperature activation process is generally required which is incompatible for next-generation flexible electronic applications. In this work, He+ irradiation is demonstrated as an athermal activation process for a-IGZO TFTs. Controlling the He+ dose enables the tuning of charge density, and a dose of 1 × 1014 He+/cm2 induces a change in charge density of 2.3 × 1012 cm-2. Time-dependent transport measurements and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) indicate that the He+-induced trapped charge is introduced because of preferential oxygen-vacancy generation. Scanning microwave impedance microscopy confirms that He+ irradiation improves the conductivity of the a-IGZO. For realization of a permanent activation, IGZO was exposed with a He+ dose of 5 × 1014 He+/cm2 and then aged 24 h to allow decay of the trapped oxide charge originating for electron-hole pair generation. The resultant shift in the charge density is primarily attributed to oxygen vacancies generated by He+ sputtering in the near-surface region.

5.
Nat Commun ; 6: 7081, 2015 May 08.
Article En | MEDLINE | ID: mdl-25953105

Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

6.
Nanotechnology ; 25(47): 475302, 2014 Nov 28.
Article En | MEDLINE | ID: mdl-25380080

We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.

8.
Nano Lett ; 13(9): 4068-74, 2013 Sep 11.
Article En | MEDLINE | ID: mdl-23981113

Hysteretic metal-insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we argue that MIT coupled to ionic dynamics should be controlled by mechanical stimuli, the behavior we refer to as the piezochemical effect. We verify this effect experimentally and demonstrate that it allows both studying materials physics and enabling novel data storage technologies with mechanical writing and current-based readout.


Metals/chemistry , Nanotechnology , Electric Conductivity , Information Storage and Retrieval , Nanostructures/chemistry
9.
Sci Rep ; 3: 2102, 2013.
Article En | MEDLINE | ID: mdl-23811605

We demonstrate a controllable surface-coordinated linear polymerization of long-chain poly(phenylacetylenyl)s that are self-organized into a "circuit-board" pattern on a Cu(100) surface. Scanning tunneling microscopy/spectroscopy (STM/S) corroborated by ab initio calculations, reveals the atomistic details of the molecular structure, and provides a clear signature of electronic and vibrational properties of the poly(phenylacetylene)s chains. Notably, the polymerization reaction is confined epitaxially to the copper lattice, despite a large strain along the polymerized chain that subsequently renders it metallic. Polymerization and depolymerization reactions can be controlled locally at the nanoscale by using a charged metal tip. This control demonstrates the possibility of precisely accessing and controlling conjugated chain-growth polymerization at low temperature. This finding may lead to the bottom-up design and realization of sophisticated architectures for molecular nano-devices.

10.
Phys Rev Lett ; 108(2): 027603, 2012 Jan 13.
Article En | MEDLINE | ID: mdl-22324709

Polarization reversal in ferroelectric nanomesas of polyvinylidene fluoride with trifluoroethylene has been probed by ultrahigh vacuum piezoresponse force microscopy in a wide temperature range from 89 to 326 K. In dramatic contrast to the macroscopic data, the piezoresponse force microscopy local switching was nonthermally activated and, at the same time, occurring at electric fields significantly lower than the intrinsic switching threshold. A "cold-field" defect-mediated extrinsic switching is shown to be an adequate scenario describing this peculiar switching behavior. The extrinsic character of the observed polarization reversal suggests that there is no fundamental bar for lowering the coercive field in ferroelectric polymer nanostructures, which is of importance for their applications in functional electronics.

11.
Nano Lett ; 12(1): 209-13, 2012 Jan 11.
Article En | MEDLINE | ID: mdl-22181709

Metallic conductance in charged ferroelectric domain walls was predicted more than 40 years ago as the first example of an electronically active homointerface in a nonconductive material. Despite decades of research on oxide interfaces and ferroic systems, the metal-insulator transition induced solely by polarization charges without any additional chemical modification has consistently eluded the experimental realm. Here we show that a localized insulator-metal transition can be repeatedly induced within an insulating ferroelectric lead-zirconate titanate, merely by switching its polarization at the nanoscale. This surprising effect is traced to tilted boundaries of ferroelectric nanodomains, that act as localized homointerfaces within the perovskite lattice, with inherently tunable carrier density. Metallic conductance is unique to nanodomains, while the conductivity of extended domain walls and domain surfaces is thermally activated. Foreseeing future applications, we demonstrate that a continuum of nonvolatile metallic states across decades of conductance can be encoded in the size of ferroelectric nanodomains using electric field.


Metals/chemistry , Metals/radiation effects , Nanostructures/chemistry , Nanostructures/radiation effects , Electric Conductivity , Electromagnetic Fields , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/ultrastructure , Surface Properties/radiation effects
12.
Nanotechnology ; 22(25): 254031, 2011 Jun 24.
Article En | MEDLINE | ID: mdl-21572199

Differential analysis of current-voltage characteristics, obtained on the surface of epitaxial films of ferroelectric lead zirconate titanate (Pb(Zr(0.2)Ti(0.8))O(3)) using scanning probe microscopy, was combined with spatially resolved mapping of variations in local conductance to differentiate between candidate mechanisms of local electronic transport and the origin of disorder. Within the assumed approximations, electron transport was inferred to be determined by two mechanisms depending on the magnitude of applied bias, with the low-bias range dominated by the trap-assisted Fowler-Nordheim tunneling through the interface and the high-bias range limited by the hopping conduction through the bulk. Phenomenological analysis of the I-V curves has further revealed that the transition between the low- and high-bias regimes is manifested both in the strength of variations within the I-V curves sampled across the surface, as well as the spatial distribution of conductance. Spatial variations were concluded to originate primarily from the heterogeneity of the interfacial electronic barrier height with an additional small contribution from random changes in the tip-contact geometry.

13.
Nano Lett ; 11(5): 1906-12, 2011 May 11.
Article En | MEDLINE | ID: mdl-21486089

Topological walls separating domains of continuous polarization, magnetization, and strain in ferroic materials hold promise of novel electronic properties, that are intrinsically localized on the nanoscale and that can be patterned on demand without change of material volume or elemental composition. We have revealed that ferroelectric domain walls in multiferroic BiFeO(3) are inherently dynamic electronic conductors, closely mimicking memristive behavior and contrary to the usual assumption of rigid conductivity. Applied electric field can cause a localized transition between insulating and conducting domain walls, tune domain wall conductance by over an order of magnitude, and create a quasicontinuous spectrum of metastable conductance states. Our measurements identified that subtle and microscopically reversible distortion of the polarization structure at the domain wall is at the origin of the dynamic conductivity. The latter is therefore likely to be a universal property of topological defects in ferroelectric semiconductors.

14.
Adv Mater ; 22(3): 314-22, 2010 Jan 19.
Article En | MEDLINE | ID: mdl-20217712

The plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy-storage, and information-technology devices depends critically on understanding and controlling field-induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics. Understanding and controlling defect functionality in ferroelectric materials is as critical to the future of oxide electronics and solid-state electrochemistry as defects in semiconductors are for semiconductor electronics. Here, recent advances in understanding the defect-mediated switching mechanisms, enabled by recent advances in electron and scanning probe microscopy, are discussed. The synergy between local probes and structural methods offers a pathway to decipher deterministic polarization switching mechanisms on the level of a single atomically defined defect.


Electronics , Magnetics , Manufactured Materials/analysis , Microscopy, Electron/methods , Microscopy, Scanning Probe/methods
15.
J Am Chem Soc ; 131(36): 12989-93, 2009 Sep 16.
Article En | MEDLINE | ID: mdl-19737018

On the basis of high resolution STM images and DFT modeling, we have resolved low- and high-coverage structures of methylthiolate (CH(3)S) self-assembled on the Au(111) surface. The key new finding is that the building block of all these structures has the same stoichiometry of two thiolate species joined by a gold adatom. The self-arrangement of the methylthiolate-adatom complexes on the surface depends critically on their stereochemical properties. Variations of the latter can produce local ordering of adatom complexes with either (3 x 4) or (3 x 4 square root(3)) periodicity. A possible structural connection between the (3 x 4 square root(3)) structure and commonly observed (square root(3) x square root(3))R30 degrees phase in methylthiolate self-assembled monolayers is developed by taking into account the reduction in the long-range order and stereochemical isomerization at high coverage. We also suggest how the observed self-arrangements of methylthiolate may be related to the c(4 x 2) phase of its longer homologues.

16.
Science ; 324(5933): 1421-5, 2009 Jun 12.
Article En | MEDLINE | ID: mdl-19520954

We demonstrate a highly reproducible control of local electron transport through a ferroelectric oxide via its spontaneous polarization. Electrons are injected from the tip of an atomic force microscope into a thin film of lead-zirconate titanate, Pb(Zr0.2Ti0.8)O3, in the regime of electron tunneling assisted by a high electric field (Fowler-Nordheim tunneling). The tunneling current exhibits a pronounced hysteresis with abrupt switching events that coincide, within experimental resolution, with the local switching of ferroelectric polarization. The large spontaneous polarization of the PZT film results in up to 500-fold amplification of the tunneling current upon ferroelectric switching. The magnitude of the effect is subject to electrostatic control via ferroelectric switching, suggesting possible applications in ultrahigh-density data storage and spintronics.

17.
Phys Rev Lett ; 102(1): 017601, 2009 Jan 09.
Article En | MEDLINE | ID: mdl-19257240

The temperature dependence of ferroelectric domain nucleation in epitaxial films of BiFeO3 is studied using variable temperature ultrahigh vacuum piezoresponse force spectroscopy in the 50 to 300 K temperature range. The nucleation bias corresponding to the onset of local ferroelectric switching in the volume of an electrostatic field confined by the metal tip was found to change less than 20% across the entire temperature range. A combination of the analytical and phase-field analysis proves that the weak temperature dependence of nucleation bias is a hallmark of an intrinsic nucleation mechanism with minimal contribution of thermal fluctuations. The effect of disorder on the observed distribution of the nucleation bias between vacuum and ambient environments is compared.

18.
Science ; 322(5908): 1664-7, 2008 Dec 12.
Article En | MEDLINE | ID: mdl-19074343

Self-assembly of molecules on surfaces is a route toward not only creating structures, but also engineering chemical reactivity afforded by the intermolecular interactions. Dimethyldisulfide (CH3SSCH3) molecules self-assemble into linear chains on single-crystal gold surfaces. Injecting low-energy electrons into individual molecules in the self-assembled structures with the tip of a scanning tunneling microscope led to a propagating chemical reaction along the molecular chain as sulfur-sulfur bonds were broken and then reformed to produce new CH3SSCH3 molecules. Theoretical and experimental evidence supports a mechanism involving electron attachment followed by dissociation of a CH3SSCH3 molecule and initiation of a chain reaction by one or both of the resulting CH3S intermediates.

19.
J Am Chem Soc ; 130(24): 7518-9, 2008 Jun 18.
Article En | MEDLINE | ID: mdl-18491902

Self-assembly of benzenethiol at low coverage on Au(111) was studied using low-temperature scanning tunneling microscopy. Phenylthiolate species (PhS), formed by thermal dehydrogenation of the parent PhSH molecule, was found to self-assemble into surface-bonded complexes with gold adatoms. Each complex involves two PhS species and one gold adatom. The PhS species form either cis- or trans-geometry relative to each other. At a higher coverage, the complexes coalesce, most likely due to the formation of weak C-H...S hydrogen bonds facilitated by the spatial arrangement of the PhS groups. Our findings thus establish that the self-assembly of arenethiols on the Au(111) surface is driven by gold adatom chemistry, which has recently been found to be the key ingredient in the self-assembly of alkanethiols on gold.

20.
Phys Rev Lett ; 99(1): 016101, 2007 Jul 06.
Article En | MEDLINE | ID: mdl-17678164

We present a novel approach to surface chemistry studies using scanning tunneling microscopy (STM), where dissociation of molecules adsorbed on metal surfaces is induced nonlocally in a 10-100 nm radius around the STM tip by hot electrons that originate from the STM tip and transport on the surface. Nonlocal molecular excitation eliminates the influence of the STM tip on the outcome of the electron-induced chemical reaction. The spatial attenuation of the nonlocal reaction is used as a direct measure of hot-electron transport on the surface.

...