Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38542119

Mycobacterium tuberculosis (Mtb) employs various strategies to manipulate the host's cellular machinery, overriding critical molecular mechanisms such as phagosome-lysosome fusion, which are crucial for its destruction. The Protein Kinase C (PKC) signaling pathways play a key role in regulating phagocytosis. Recent research in Interferon-activated macrophages has unveiled that PKC phosphorylates Coronin-1, leading to a shift from phagocytosis to micropinocytosis, ultimately resulting in Mtb destruction. Therefore, this study aims to identify additional PKC targets that may facilitate Mycobacterium bovis (M. bovis) infection in macrophages. Protein extracts were obtained from THP-1 cells, both unstimulated and mycobacterial-stimulated, in the presence or absence of a general PKC inhibitor. We conducted an enrichment of phosphorylated peptides, followed by their identification through mass spectrometry (LC-MS/MS). Our analysis revealed 736 phosphorylated proteins, among which 153 exhibited alterations in their phosphorylation profiles in response to infection in a PKC-dependent manner. Among these 153 proteins, 55 are involved in various cellular processes, including endocytosis, vesicular traffic, autophagy, and programmed cell death. Importantly, our findings suggest that PKC may negatively regulate autophagy by phosphorylating proteins within the mTORC1 pathway (mTOR2/PKC/Raf-1/Tsc2/Raptor/Sequestosome-1) in response to M. bovis BCG infection, thereby promoting macrophage infection.


Mycobacterium Infections , Mycobacterium bovis , Mycobacterium tuberculosis , Humans , Mycobacterium bovis/physiology , Chromatography, Liquid , Tandem Mass Spectrometry , Macrophages/metabolism , Autophagy , Mycobacterium Infections/metabolism , Protein Kinase C/metabolism
2.
Pathog Dis ; 77(3)2019 04 01.
Article En | MEDLINE | ID: mdl-31175361

Mycobacterium ensures its survival inside macrophages and long-term infection by subverting the innate and adaptive immune response through the modulation of cytokine gene expression profiles. Different Mycobacterium species promote the expression of TGFß and IL-10, which, at the early stages of infection, block the formation of the phagolysosome, thereby securing mycobacterial survival upon phagocytosis, and at later stages, antagonize IFNγ production and functions. Despite the key role of IL-10 in mycobacterium infection, the signal transduction pathways leading to IL-10 expression in infected macrophages are poorly understood. Here, we report that Mycobacterium bovis BCG promotes IL-10 expression and cytokine production by establishing a SYK/PKCα/ß positive feedback loop that leads to STAT3 activation.


Interleukin-10/biosynthesis , Monocytes/immunology , Mycobacterium bovis/immunology , Protein Kinase C beta/metabolism , Protein Kinase C-alpha/metabolism , STAT3 Transcription Factor/metabolism , Syk Kinase/metabolism , Gene Expression , Gene Expression Regulation , Gene Regulatory Networks , Humans , THP-1 Cells
3.
Front Immunol ; 8: 50, 2017.
Article En | MEDLINE | ID: mdl-28203237

Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogenic Gram-positive bacterium, is the cause of tuberculosis (TB), a major worldwide human infectious disease. The innate immune system is the first host defense against M. tuberculosis. The recognition of this pathogen is mediated by several classes of pattern recognition receptors expressed on the host innate immune cells, including Toll-like receptors, Nod-like receptors, and C-type lectin receptors like Dectin-1, the Mannose receptor, and DC-SIGN. M. tuberculosis interaction with any of these receptors activates multiple signaling pathways among which the protein kinase C, the MAPK, and the NFκB pathways have been widely studied. These pathways have been implicated in macrophage invasion, M. tuberculosis survival, and impaired immune response, thus promoting a successful infection and disease. Interestingly, the Wnt signaling pathway, classically regarded as a pathway involved in the control of cell proliferation, migration, and differentiation in embryonic development, has recently been involved in immunoregulatory mechanisms in infectious and inflammatory diseases, such as TB, sepsis, psoriasis, rheumatoid arthritis, and atherosclerosis. In this review, we present the current knowledge supporting a role for the Wnt signaling pathway during macrophage infection by M. tuberculosis and the regulation of the immune response against M. tuberculosis. Understanding the cross talk between different signaling pathways activated by M. tuberculosis will impact on the search for new therapeutic targets to fuel the rational design of drugs aimed to restore the immunological response against M. tuberculosis.

...