Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromolecules ; 56(5): 2149-2163, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36938513

RESUMEN

We have combined X-ray diffraction, neutron diffraction with polarization analysis, small-angle neutron scattering (SANS), neutron elastic fixed window scans (EFWS), and differential scanning calorimetry (DSC) to investigate polymeric blends of industrial interest composed by isotopically labeled styrene-butadiene rubber (SBR) and polystyrene (PS) oligomers of size smaller than the Kuhn length. The EFWS are sensitive to the onset of liquid-like motions across the calorimetric glass transition, allowing the selective determination of the "microscopic" effective glass transitions of the components. These are compared with the "macroscopic" counterparts disentangled by the analysis of the DSC results in terms of a model based on the effects of thermally driven concentration fluctuations and self-concentration. At the microscopic level, the mixtures are dynamically heterogeneous for blends with intermediate concentrations or rich in PS, while the sample with highest content of the fast SBR component looks as dynamically homogeneous. Moreover, the combination of SANS and DSC has allowed determining the relevant length scale for the α-relaxation through its loss of equilibrium to be ≈30 Å. This is compared with the different characteristic length scales that can be identified in these complex mixtures from structural, thermodynamical, and dynamical points of view because of the combined approach followed. We also discuss the sources of the non-Gaussian effects observed for the atomic displacements and the applicability of a Lindemann-like criterion in these materials.

2.
Macromolecules ; 55(17): 7614-7625, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36118597

RESUMEN

We have disentangled the contributions to the glass transition as observed by differential scanning calorimetry (DSC) on simplified systems of industrial interest consisting of blends of styrene-butadiene rubber (SBR) and polystyrene (PS) oligomer. To do this, we have started from a model previously proposed to describe the effects of blending on the equilibrium dynamics of the α-relaxation as monitored by broadband dielectric spectroscopy (BDS). This model is based on the combination of self-concentration and thermally driven concentration fluctuations (TCFs). Considering the direct insight of small-angle neutron scattering on TCFs, blending effects on the α-relaxation can be fully accounted for by using only three free parameters: the self-concentration of the components φself SBR and φself PS) and the relevant length scale of segmental relaxation, 2R c. Their values were determined from the analysis of the BDS results on these samples, being that obtained for 2R c ≈ 25Å in the range usually reported for this magnitude in glass-forming systems. Using a similar approach, the distinct contributions to the DSC experiments were evaluated by imposing the dynamical information deduced from BDS and connecting the component segmental dynamics in the blend above the glass-transition temperature T g (at equilibrium) and the way the equilibrium is lost when cooling toward the glassy state. This connection was made through the α-relaxation characteristic time of each component at T g, τg. The agreement of such constructed curves with the experimental DSC results is excellent just assuming that τg is not affected by blending.

3.
Macromol Rapid Commun ; 42(18): e2100181, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142733

RESUMEN

Herein, the synthesis of a novel nitroxide-mediated polymerization (NMP) initiator bearing a photolabile ortho-nitrobenzyl (oNB) group allowing surface-initiated NMP preparation of well-defined photoresponsive polystyrene grafted on silica nanoparticles is described. The photocleavable and photoresponsive properties of the prepared materials are demonstrated using small angle X-ray scattering (SAXS) characterization.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Óxidos de Nitrógeno , Polimerizacion , Poliestirenos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Chemistry ; 24(18): 4597-4606, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29493817

RESUMEN

Co-Fe-Mn/γ-Al2 O3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C2 -C4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al2 O3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al2 O3 catalyst the selectivity towards the fractions of C5+ and CH4 could be reduced, whereas the selectivity towards the fraction of C4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al2 O3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase.

5.
Solid State Nucl Magn Reson ; 28(1): 13-21, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16026687

RESUMEN

A multiplex phase cycling method (N. Ivchenko et al., J. Magn. Reson. 160 (2003) 52-58) has been used to record two-dimensional MQMAS spectra with a very short phase cycling. A straightforward procedure has been developed to easily process the data. Combining this Multiplex approach and the new Soft-Pulse-Adding-Mixing (SPAM) method considerably increases the signal-to-noise ratio of the conventional MQMAS experiment. The Multiplex acquisition procedure is much simpler than the echo/anti-echo method recently proposed, and has been applied with success to record (87)Rb spectra of RbNO(3) and (27)Al 3Q and 5Q MQMAS NMR of microporous aluminophosphate AlPO(4)-14.

6.
Chem Commun (Camb) ; (8): 1049-51, 2005 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-15719112

RESUMEN

NO2 disproportionation on alkaline zeolites is used to generate nitrosonium (NO+) and nitrate ions on the surface, and the infrared vibrations observed are very sensitive to the cation chemical hardness and to the basicity of zeolitic oxygen atoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA