Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
PeerJ Comput Sci ; 8: e892, 2022.
Article En | MEDLINE | ID: mdl-36262157

The substitution box (S-box) plays a vital role in creating confusion during the encryption process of digital data. The quality of encryption schemes depends upon the S-box. There have been several attempts to enhance the quality of the S-box by using fractal chaotic mechanisms. However, there is still weakness in the robustness against cryptanalysis of fractal-based S-boxes. Due to their chaotic behavior, fractals are frequently employed to achieve randomness by confusion and diffusion process. A complex number-based S-box and a chaotic map diffusion are proposed to achieve high nonlinearity and low correlation. This study proposed a Mandelbrot set S-box construction based on the complex number and Chen chaotic map for resisting cryptanalytic attacks by creating diffusion in our proposed algorithm. The cryptosystem was built on the idea of substitution permutation networks (SPN). The complex nature of the proposed S-box makes it more random than other chaotic maps. The robustness of the proposed system was analyzed by different analysis properties of the S-box, such as nonlinearity, strict avalanche criterion, Bit independent criterion, and differential and linear probability. Moreover, to check the strength of the proposed S-box against differential and brute force attacks, we performed image encryption with the proposed S-box. The security analysis was performed, including statistical attack analysis and NIST analysis. The analysis results show that the proposed system achieves high-security standards than existing schemes.

2.
Sensors (Basel) ; 21(15)2021 Jul 28.
Article En | MEDLINE | ID: mdl-34372333

Smart devices have accentuated the importance of geolocation information. Geolocation identification using smart devices has paved the path for incentive-based location-based services (LBS). However, a user's full control over a smart device can allow tampering of the location proof. Witness-oriented location proof systems (LPS) have emerged to resist the generation of false proofs and mitigate collusion attacks. However, witness-oriented LPS are still susceptible to three-way collusion attacks (involving the user, location authority, and the witness). To overcome the threat of three-way collusion in existing schemes, we introduce a decentralized consensus protocol called MobChain in this paper. In this scheme the selection of a witness and location authority is achieved through a distributed consensus of nodes in an underlying P2P network that establishes a private blockchain. The persistent provenance data over the blockchain provides strong security guarantees; as a result, the forging and manipulation of location becomes impractical. MobChain provides secure location provenance architecture, relying on decentralized decision making for the selection of participants of the protocol thereby addressing the three-way collusion problem. Our prototype implementation and comparison with the state-of-the-art solutions show that MobChain is computationally efficient and highly available while improving the security of LPS.


Blockchain , Consensus , Humans
3.
Sensors (Basel) ; 21(14)2021 Jul 20.
Article En | MEDLINE | ID: mdl-34300673

With the advent of smart health, smart cities, and smart grids, the amount of data has grown swiftly. When the collected data is published for valuable information mining, privacy turns out to be a key matter due to the presence of sensitive information. Such sensitive information comprises either a single sensitive attribute (an individual has only one sensitive attribute) or multiple sensitive attributes (an individual can have multiple sensitive attributes). Anonymization of data sets with multiple sensitive attributes presents some unique problems due to the correlation among these attributes. Artificial intelligence techniques can help the data publishers in anonymizing such data. To the best of our knowledge, no fuzzy logic-based privacy model has been proposed until now for privacy preservation of multiple sensitive attributes. In this paper, we propose a novel privacy preserving model F-Classify that uses fuzzy logic for the classification of quasi-identifier and multiple sensitive attributes. Classes are defined based on defined rules, and every tuple is assigned to its class according to attribute value. The working of the F-Classify Algorithm is also verified using HLPN. A wide range of experiments on healthcare data sets acknowledged that F-Classify surpasses its counterparts in terms of privacy and utility. Being based on artificial intelligence, it has a lower execution time than other approaches.


Artificial Intelligence , Privacy , Algorithms , Fuzzy Logic , Models, Theoretical
4.
PLoS One ; 13(4): e0195021, 2018.
Article En | MEDLINE | ID: mdl-29649267

In health sector, trust is considered important because it indirectly influences the quality of health care through patient satisfaction, adherence and the continuity of its relationship with health care professionals and the promotion of accurate and timely diagnoses. One of the important requirements of TRSs in the health sector is rating secrecy, which mandates that the identification information about the service consumer should be kept secret to prevent any privacy violation. Anonymity and trust are two imperative objectives, and no significant explicit efforts have been made to achieve both of them at the same time. In this paper, we present a framework for solving the problem of reconciling trust with anonymity in the health sector. Our solution comprises Anonymous Reputation Management (ARM) protocol and Context-aware Trustworthiness Assessment (CTA) protocol. ARM protocol ensures that only those service consumers who received a service from a specific service provider provide a recommendation score anonymously with in the specified time limit. The CTA protocol computes the reputation of a user as a service provider and as a recommender. To determine the correctness of the proposed ARM protocol, formal modelling and verification are performed using High Level Petri Nets (HLPN) and Z3 Solver. Our simulation results verify the accuracy of the proposed context-aware trust assessment scheme.


Computer Security , Confidentiality , Health Services/standards , Privacy , Algorithms , Computer Simulation , Humans , Information Systems , Internet , Models, Theoretical , Reproducibility of Results , Software , Trust
...