Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675617

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Emulsions , Particle Size , Plant Extracts , Tinospora , Water , Emulsions/chemistry , Plant Extracts/chemistry , Tinospora/chemistry , Water/chemistry , Sonication , Nanoparticles/chemistry , Oils/chemistry , Surface-Active Agents/chemistry
2.
Int J Food Sci ; 2022: 4784794, 2022.
Article En | MEDLINE | ID: mdl-36569452

The quality of the bread has been always an important issue and needs to be improved. Curcumin nanoemulsion provides an antioxidant and other nutritional value to the bakery products. Our aim was to determine the effect of curcumin nanoemulsions as a food additive on the quality and digestibility of breads. Curcumin nanoemulsion was stabilized by using Tween 80 and an ultrasound approach and its incorporation of curcumin nanoemulsion into bread formulation as the replacement of margarine. The objects of the study were the obtained bread from wheat flour, namely, control sample, CuNE containing sample, and raw curcumin containing bread sample. The results of the sensory evaluation of prototype bread suggest that curcumin nanoemulsion does affect organoleptic properties of bread. The result of antioxidant activity for curcumin nanoemulsion bread is higher (31.59%) compared to a control bread (20.59%). Also, in addition to a positive effect, there is an increase in the total strain and the elasticity of the crumb of bread compared to the control bread. SEM (scanning electron microscope) study shows that formulation with nanoemulsion promotes uniform distribution of fine pores (porosity).

...