Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076936

RESUMEN

There is an established yet unexplained link between interferon (IFN) and systemic lupus erythematosus (SLE). The expression of sequences derived from transposable elements (TEs) may contribute to production of type I IFNs and generation of autoantibodies. We profiled cell-sorted RNA-seq data (CD4+ T cells, CD14+ monocytes, CD19+ B cells, and NK cells) from PBMCs of 120 SLE patients and quantified TE expression identifying 27,135 TEs. We tested for differential TE expression across 10 SLE phenotypes including autoantibody production and disease activity and discovered 731 differentially expressed (DE) TEs whose effects were mostly cell-specific and phenotype-specific. DE TEs were enriched for specific families and viral genes encoded in TE sequences. Increased expression of DE TEs was associated with genes involved in antiviral activity such as LY6E, ISG15, TRIM22 and pathways such as interferon signaling. These findings suggest that expression of TEs contributes to activation of SLE-related mechanisms in a cell-specific manner, which can impact disease diagnostics and therapeutics.

2.
PLoS One ; 18(2): e0281371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36787323

RESUMEN

OBJECTIVE: There are currently no specific biomarkers to identify patients with abdominal aortic aneurysms (AAAs). Circulating exosomes contain microRNAs (miRNA) that are potential biomarkers for the presence of disease. This study aimed to characterize the exosomal miRNA expression profile of patients with AAAs in order to identify novel biomarkers of disease. METHODS: Patients undergoing duplex ultrasound (US) or computed tomography (CT) for screening or surveillance of an AAA were screened to participate in the study. Cases with AAA were defined as having a max aortic diameter >3 cm. Circulating plasma exosomes were isolated using Cushioned-Density Gradient Ultracentrifugation and total RNA was extracted. Next Generation Sequencing was performed on the Illumina HiSeq4000 SE50. Differential miRNA expression analysis was performed using DESeq2 software with a Benjamini-Hochberg correction. MicroRNA expression profiles were validated by Quantitative Real-Time PCR. RESULTS: A total of 109 patients were screened to participate in the study. Eleven patients with AAA and 15 non-aneurysmal controls met study criteria and were enrolled. Ultrasound measured aortic diameter was significantly larger in the AAA group (mean maximum diameter 4.3 vs 2.0 cm, P = 6.45x10-6). More AAA patients had coronary artery disease (5/11 vs 1/15, P = 0.05) as compared to controls, but the groups did not differ significantly in the rates of peripheral arterial disease and chronic obstructive pulmonary disease. A total of 40 miRNAs were differentially expressed (P<0.05). Of these, 18 miRNAs were downregulated and 22 were upregulated in the AAA group compared to controls. After false discovery rate (FDR) adjustment, only miR-122-5p was expressed at significantly different levels in the AAA group compared to controls (fold change = 5.03 controls vs AAA; raw P = 1.8x10-5; FDR P = 0.02). CONCLUSION: Plasma exosomes from AAA patients have significantly reduced levels of miRNA-122-5p compared to controls. This is a novel exosome-associated miRNA that warrants further investigation to determine its use as a diagnostic biomarker and potential implications in AAA pathogenesis.


Asunto(s)
Aneurisma de la Aorta Abdominal , Exosomas , MicroARNs , Humanos , Exosomas/metabolismo , MicroARNs/metabolismo , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Biomarcadores , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Science ; 376(6589): eabf1970, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389781

RESUMEN

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. Knowledge of circulating immune cell types and states associated with SLE remains incomplete. We profiled more than 1.2 million peripheral blood mononuclear cells (162 cases, 99 controls) with multiplexed single-cell RNA sequencing (mux-seq). Cases exhibited elevated expression of type 1 interferon-stimulated genes (ISGs) in monocytes, reduction of naïve CD4+ T cells that correlated with monocyte ISG expression, and expansion of repertoire-restricted cytotoxic GZMH+ CD8+ T cells. Cell type-specific expression features predicted case-control status and stratified patients into two molecular subtypes. We integrated dense genotyping data to map cell type-specific cis-expression quantitative trait loci and to link SLE-associated variants to cell type-specific expression. These results demonstrate mux-seq as a systematic approach to characterize cellular composition, identify transcriptional signatures, and annotate genetic variants associated with SLE.


Asunto(s)
Interferón Tipo I , Lupus Eritematoso Sistémico , Linfocitos T CD8-positivos/metabolismo , Estudios de Casos y Controles , Humanos , Interferón Tipo I/metabolismo , Leucocitos Mononucleares , Lupus Eritematoso Sistémico/genética , RNA-Seq , Transcripción Genética
4.
Sci Adv ; 7(38): eabi4360, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34524848

RESUMEN

Current pooled CRISPR screens for cis-regulatory elements (CREs), based on transcriptional output changes, are typically limited to characterizing CREs of only one gene. Here, we describe CRISPRpath, a scalable screening strategy for parallelly characterizing CREs of genes linked to the same biological pathway and converging phenotypes. We demonstrate the ability of CRISPRpath for simultaneously identifying functional enhancers of six genes in the 6-thioguanine­induced DNA mismatch repair pathway using both CRISPR interference (CRISPRi) and CRISPR nuclease (CRISPRn) approaches. Sixty percent of the identified enhancers are known promoters with distinct epigenomic features compared to other active promoters, including increased chromatin accessibility and interactivity. Furthermore, by imposing different levels of selection pressure, CRISPRpath can distinguish enhancers exerting strong impact on gene expression from those exerting weak impact. Our results offer a nuanced view of cis-regulation and demonstrate that CRISPRpath can be leveraged for understanding the complex gene regulatory program beyond transcriptional output at scale.

5.
Commun Biol ; 4(1): 488, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883687

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease in which outcomes vary among different racial groups. We leverage cell-sorted RNA-seq data (CD14+ monocytes, B cells, CD4+ T cells, and NK cells) from 120 SLE patients (63 Asian and 57 White individuals) and apply a four-tier approach including unsupervised clustering, differential expression analyses, gene co-expression analyses, and machine learning to identify SLE subgroups within this multiethnic cohort. K-means clustering on each cell-type resulted in three clusters for CD4 and CD14, and two for B and NK cells. To understand the identified clusters, correlation analysis revealed significant positive associations between the clusters and clinical parameters including disease activity as well as ethnicity. We then explored differentially expressed genes between Asian and White groups for each cell-type. The shared differentially expressed genes across cells were involved in SLE or other autoimmune-related pathways. Co-expression analysis identified similarly regulated genes across samples and grouped these genes into modules. Finally, random forest classification of disease activity in the White and Asian cohorts showed the best classification in CD4+ T cells in White individuals. The results from these analyses will help stratify patients based on their gene expression signatures to enable SLE precision medicine.


Asunto(s)
Lupus Eritematoso Sistémico/etnología , Transcriptoma/inmunología , Asiático/genética , Linfocitos B/inmunología , California , Estudios de Cohortes , Etnicidad/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Células Asesinas Naturales/inmunología , Lupus Eritematoso Sistémico/genética , Masculino , Monocitos/inmunología , Linfocitos T/inmunología , Población Blanca/genética
7.
Nature ; 587(7835): 644-649, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33057195

RESUMEN

Lineage-specific epigenomic changes during human corticogenesis have been difficult to study owing to challenges with sample availability and tissue heterogeneity. For example, previous studies using single-cell RNA sequencing identified at least 9 major cell types and up to 26 distinct subtypes in the dorsal cortex alone1,2. Here we characterize cell-type-specific cis-regulatory chromatin interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor cells, excitatory neurons, and interneurons isolated from mid-gestational samples of the human cortex. We show that chromatin interactions underlie several aspects of gene regulation, with transposable elements and disease-associated variants enriched at distal interacting regions in a cell-type-specific manner. In addition, promoters with increased levels of chromatin interactivity-termed super-interactive promoters-are enriched for lineage-specific genes, suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we develop CRISPRview, a technique that integrates immunostaining, CRISPR interference, RNAscope, and image analysis to validate cell-type-specific cis-regulatory elements in heterogeneous populations of primary cells. Our findings provide insights into cell-type-specific gene expression patterns in the developing human cortex and advance our understanding of gene regulation and lineage specification during this crucial developmental window.


Asunto(s)
Células/clasificación , Células/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/embriología , Epigenoma , Epigenómica , Organogénesis/genética , Sistemas CRISPR-Cas , Linaje de la Célula/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN , Histonas/química , Histonas/metabolismo , Humanos , Imagenología Tridimensional , Metilación , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción , Reproducibilidad de los Resultados , Transcripción Genética
8.
PLoS One ; 15(4): e0228760, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32348304

RESUMEN

Accurate RNA quantification at the single-cell level is critical for understanding the dynamics of gene expression and regulation across space and time. Single molecule FISH (smFISH), such as RNAscope, provides spatial and quantitative measurements of individual transcripts, therefore, can be used to explore differential gene expression among a heterogeneous cell population if combined with cell identify information. However, such analysis is not straightforward, and existing image analysis pipelines cannot integrate both RNA transcripts and cellular staining information to automatically output cell type-specific gene expression. We developed an efficient and customizable analysis method, Single-Molecule Automatic RNA Transcription Quantification (SMART-Q), to enable the analysis of gene transcripts in a cell type-specific manner. SMART-Q efficiently infers cell identity information from multiplexed immuno-staining and quantifies cell type-specific transcripts using a 3D Gaussian fitting algorithm. Furthermore, we have optimized SMART-Q for user experiences, such as flexible parameters specification, batch data outputs, and visualization of analysis results. SMART-Q meets the demands for efficient quantification of single-molecule RNA and can be widely used for cell type-specific RNA transcript analysis.


Asunto(s)
ARN/genética , Programas Informáticos , Transcripción Genética , Núcleo Celular/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Control de Calidad , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Nat Genet ; 51(8): 1252-1262, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367015

RESUMEN

Mutations in gene regulatory elements have been associated with a wide range of complex neuropsychiatric disorders. However, due to their cell-type specificity and difficulties in characterizing their regulatory targets, the ability to identify causal genetic variants has remained limited. To address these constraints, we perform an integrative analysis of chromatin interactions, open chromatin regions and transcriptomes using promoter capture Hi-C, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing, respectively, in four functionally distinct neural cell types: induced pluripotent stem cell (iPSC)-induced excitatory neurons and lower motor neurons, iPSC-derived hippocampal dentate gyrus-like neurons and primary astrocytes. We identify hundreds of thousands of long-range cis-interactions between promoters and distal promoter-interacting regions, enabling us to link regulatory elements to their target genes and reveal putative processes that are dysregulated in disease. Finally, we validate several promoter-interacting regions by using clustered regularly interspaced short palindromic repeats (CRISPR) techniques in human excitatory neurons, demonstrating that CDK5RAP3, STRAP and DRD2 are transcriptionally regulated by physically linked enhancers.


Asunto(s)
Linaje de la Célula/genética , Cromatina/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Marcadores Genéticos , Trastornos Mentales/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas , Mapeo Cromosómico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lactante , Masculino , Neuronas/citología , Polimorfismo de Nucleótido Simple
10.
Elife ; 82019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31124784

RESUMEN

Enhancers are important regulatory elements that can control gene activity across vast genetic distances. However, the underlying nature of this regulation remains obscured because it has been difficult to observe in living cells. Here, we visualize the spatial organization and transcriptional output of the key pluripotency regulator Sox2 and its essential enhancer Sox2 Control Region (SCR) in living embryonic stem cells (ESCs). We find that Sox2 and SCR show no evidence of enhanced spatial proximity and that spatial dynamics of this pair is limited over tens of minutes. Sox2 transcription occurs in short, intermittent bursts in ESCs and, intriguingly, we find this activity demonstrates no association with enhancer proximity, suggesting that direct enhancer-promoter contacts do not drive contemporaneous Sox2 transcription. Our study establishes a framework for interrogation of enhancer function in living cells and supports an unexpected mechanism for enhancer control of Sox2 expression that uncouples transcription from enhancer proximity.


Asunto(s)
Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Factores de Transcripción SOXB1/biosíntesis , Transcripción Genética , Animales , Ratones , Factores de Transcripción SOXB1/genética
11.
Science ; 363(6424)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30545847

RESUMEN

A wide range of human diseases result from haploinsufficiency, where the function of one of the two gene copies is lost. Here, we targeted the remaining functional copy of a haploinsufficient gene using CRISPR-mediated activation (CRISPRa) in Sim1 and Mc4r heterozygous mouse models to rescue their obesity phenotype. Transgenic-based CRISPRa targeting of the Sim1 promoter or its distant hypothalamic enhancer up-regulated its expression from the endogenous functional allele in a tissue-specific manner, rescuing the obesity phenotype in Sim1 heterozygous mice. To evaluate the therapeutic potential of CRISPRa, we injected CRISPRa-recombinant adeno-associated virus into the hypothalamus, which led to reversal of the obesity phenotype in Sim1 and Mc4r haploinsufficient mice. Our results suggest that endogenous gene up-regulation could be a potential strategy to treat altered gene dosage diseases.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Elementos de Facilitación Genéticos , Haploinsuficiencia , Obesidad/genética , Regiones Promotoras Genéticas , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Dependovirus , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Heterocigoto , Hipotálamo , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Transgénicos , Obesidad/terapia , Fenotipo , Receptor de Melanocortina Tipo 4/genética , Proteínas Represoras/genética , Regulación hacia Arriba , Aumento de Peso
12.
Nat Biotechnol ; 36(1): 89-94, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227470

RESUMEN

Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling of transcriptomes. However, assessing differential expression across multiple individuals has been hampered by inefficient sample processing and technical batch effects. Here we describe a computational tool, demuxlet, that harnesses natural genetic variation to determine the sample identity of each droplet containing a single cell (singlet) and detect droplets containing two cells (doublets). These capabilities enable multiplexed dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at higher throughput than in standard workflows. Using simulated data, we show that 50 single-nucleotide polymorphisms (SNPs) per cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 individuals. Given genotyping data for each of eight pooled samples, demuxlet correctly recovers the sample identity of >99% of singlets and identifies doublets at rates consistent with previous estimates. We apply demuxlet to assess cell-type-specific changes in gene expression in 8 pooled lupus patient samples treated with interferon (IFN)-ß and perform eQTL analysis on 23 pooled samples.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Genotipo , Humanos , Interferones/uso terapéutico , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
13.
Elife ; 62017 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-28623666

RESUMEN

Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ.


Asunto(s)
Células Acinares/fisiología , Diferenciación Celular , Organogénesis , Factores de Transcripción SOXB1/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/embriología , Animales , Técnicas de Inactivación de Genes , Humanos , Ratones
14.
Genome Res ; 26(3): 397-405, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26813977

RESUMEN

With <2% of the human genome coding for proteins, a major challenge is to interpret the function of the noncoding DNA. Millions of regulatory sequences have been predicted in the human genome through analysis of DNA methylation, chromatin modification, hypersensitivity to nucleases, and transcription factor binding, but few have been shown to regulate transcription in their native contexts. We have developed a high-throughput CRISPR/Cas9-based genome-editing strategy and used it to interrogate 174 candidate regulatory sequences within the 1-Mbp POU5F1 locus in human embryonic stem cells (hESCs). We identified two classical regulatory elements, including a promoter and a proximal enhancer, that are essential for POU5F1 transcription in hESCs. Unexpectedly, we also discovered a new class of enhancers that contribute to POU5F1 transcription in an unusual way: Disruption of such sequences led to a temporary loss of POU5F1 transcription that is fully restored after a few rounds of cell division. These results demonstrate the utility of high-throughput screening for functional characterization of noncoding DNA and reveal a previously unrecognized layer of gene regulation in human cells.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Pruebas Genéticas , Fenotipo , Línea Celular , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Marcación de Gen/métodos , Pruebas Genéticas/métodos , Genoma Humano , Ensayos Analíticos de Alto Rendimiento , Humanos , Factor 3 de Transcripción de Unión a Octámeros/genética , Secuencias Reguladoras de Ácidos Nucleicos , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...