Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503119

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

2.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092555

RESUMEN

Cancer cachexia (CC), a wasting syndrome of muscle and adipose tissue resulting in weight loss, is observed in 50% of patients with solid tumors. Management of CC is limited by the absence of biomarkers and knowledge of molecules that drive its phenotype. To identify such molecules, we injected 54 human non-small cell lung cancer (NSCLC) lines into immunodeficient mice, 17 of which produced an unambiguous phenotype of cachexia or non-cachexia. Whole-exome sequencing revealed that 8 of 10 cachexia lines, but none of the non-cachexia lines, possessed mutations in serine/threonine kinase 11 (STK11/LKB1), a regulator of nutrient sensor AMPK. Silencing of STK11/LKB1 in human NSCLC and murine colorectal carcinoma lines conferred a cachexia phenotype after cell transplantation into immunodeficient (human NSCLC) and immunocompetent (murine colorectal carcinoma) models. This host wasting was associated with an alteration in the immune cell repertoire of the tumor microenvironments that led to increases in local mRNA expression and serum levels of CC-associated cytokines. Mutational analysis of circulating tumor DNA from patients with NSCLC identified 89% concordance between STK11/LKB1 mutations and weight loss at cancer diagnosis. The current data provide evidence that tumor STK11/LKB1 loss of function is a driver of CC, simultaneously serving as a genetic biomarker for this wasting syndrome.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Colorrectales , Neoplasias Pulmonares , Síndrome Debilitante , Animales , Humanos , Ratones , Quinasas de la Proteína-Quinasa Activada por el AMP , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Colorrectales/genética , Neoplasias Pulmonares/patología , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Microambiente Tumoral , Pérdida de Peso
3.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066421

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

4.
Sci Rep ; 13(1): 4036, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899011

RESUMEN

Inflammation plays a central role in immune response and macrophage activation. Emerging studies demonstrate that along with proteins and genomic factors, noncoding RNA are potentially involved in regulation of immune response and inflammation. Our recent study demonstrated that lncRNA HOTAIR plays key roles in cytokine expression and inflammation in macrophages. The primary goal of this study is to discover novel lncRNAs that are crucial players in inflammation, macrophage activation, and immune response in humans. Towards this, we have stimulated THP1-derived macrophages (THP1-MΦ) with lipopolysaccharides (LPS) and performed the whole transcriptome RNA-seq analysis. Based on this analysis, we discovered that along with well-known marker for inflammation (such as cytokines), a series of long noncoding RNAs (lncRNAs) expression were highly induced upon LPS-stimulation of macrophages, suggesting their potential roles in inflammation and macrophage activation. We termed these family of lncRNAs as Long-noncoding Inflammation Associated RNA (LinfRNA). Dose and time dependent analysis demonstrated that many human LinfRNA (hLinfRNAs) expressions follow similar patterns as cytokine expressions. Inhibition of NF-κB suppressed the expression of most hLinfRNAs suggesting their potential regulation via NF-κB activation during inflammation and macrophage activation. Antisense-mediated knockdown of hLinfRNA1 suppressed the LPS-induced expression of cytokines and pro-inflammatory genes such as IL6, IL1ß, and TNFα expression, suggesting potential functionality of the hLinfRNAs in cytokine regulation and inflammation. Overall, we discovered a series of novel hLinfRNAs that are potential regulators of inflammation and macrophage activation and may be linked to inflammatory and metabolic diseases.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , FN-kappa B/metabolismo , Activación de Macrófagos , Lipopolisacáridos/farmacología , Inflamación/metabolismo , Citocinas/genética
5.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35881485

RESUMEN

Acquired mutations in the ligand-binding domain (LBD) of the gene encoding estrogen receptor α (ESR1) are common mechanisms of endocrine therapy resistance in patients with metastatic ER+ breast cancer. The ESR1 Y537S mutation, in particular, is associated with development of resistance to most endocrine therapies used to treat breast cancer. Employing a high-throughput screen of nearly 1,200 Federal Drug Administration-approved (FDA-approved) drugs, we show that OTX015, a bromodomain and extraterminal domain (BET) inhibitor, is one of the top suppressors of ESR1 mutant cell growth. OTX015 was more efficacious than fulvestrant, a selective ER degrader, in inhibiting ESR1 mutant xenograft growth. When combined with abemaciclib, a CDK4/6 inhibitor, OTX015 induced more potent tumor regression than current standard-of-care treatment of abemaciclib + fulvestrant. OTX015 has preferential activity against Y537S mutant breast cancer cells and blocks their clonal selection in competition studies with WT cells. Thus, BET inhibition has the potential to both prevent and overcome ESR1 mutant-induced endocrine therapy resistance in breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Humanos , Mutación , Dominios Proteicos , Transcripción Genética
6.
Cancer Immunol Res ; 10(7): 829-843, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561311

RESUMEN

The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11. In primary and metastatic TNBC cohorts, tumors with high MYC expression or activity exhibited low STING expression. Using a CRISPR-mediated enhancer perturbation approach, we demonstrated that MYC-driven immune evasion is mediated by STING repression. STING repression induced resistance to PD-L1 blockade in mouse models of TNBC. Finally, a small-molecule inhibitor of MYC combined with PD-L1 blockade elicited a durable response in immune-cold TNBC with high MYC expression, suggesting a strategy to restore PD-L1 inhibitor sensitivity in MYC-overexpressing TNBC.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias de la Mama Triple Negativas , Animales , Antígeno B7-H1 , Línea Celular Tumoral , Represión Epigenética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Evasión Inmune , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
7.
Bioinform Biol Insights ; 16: 11779322211072333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250265

RESUMEN

Fundamental principles of HIV-1 integration into the human genome have been revealed in the past 2 decades. However, the impact of the integration site on proviral transcription and expression remains poorly understood. Solving this problem requires the analysis of multiple genomic datasets for thousands of proviral integration sites. Here, we generated and combined large-scale datasets, including epigenetics, transcriptome, and 3-dimensional genome architecture to interrogate the chromatin states, transcription activity, and nuclear sub-compartments around HIV-1 integrations in Jurkat CD4+ T cells to decipher human genome regulatory features shaping the transcription of proviral classes based on their position and orientation in the genome. Through a Hidden Markov Model and ranked informative values prior to a machine learning logistic regression model, we defined nuclear sub-compartments and chromatin states contributing to genomic architecture, transcriptional activity, and nucleosome density of regions neighboring the integration site, as additive features influencing HIV-1 expression. Our integrated genomics approach also allows for a robust experimental design, in which HIV-1 can be genetically introduced into precise genomic locations with known regulatory features to assess the relationship of integration positions to viral transcription and fate.

8.
Mol Cell ; 82(1): 60-74.e5, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995509

RESUMEN

Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.


Asunto(s)
Gluconeogénesis , Glucosa/deficiencia , Histonas/metabolismo , Metabolismo de los Lípidos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Regulación Fúngica de la Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Metabolismo de los Lípidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
Mod Pathol ; 35(3): 333-343, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34538873

RESUMEN

Low-grade oncocytic tumor (LOT) of the kidney is a recently described entity with poorly understood pathogenesis. Using next-generation sequencing (NGS) and complementary approaches, we provide insight into its biology. We describe 22 LOT corresponding to 7 patients presenting with a median age of 75 years (range 63-86 years) and male to female ratio 2:5. All 22 tumors demonstrated prototypical microscopic features. Tumors were well-circumscribed and solid. They were composed of sheets of tumor cells in compact nests. Tumor cells had eosinophilic cytoplasm, round to oval nuclei (without nuclear membrane irregularities), focal subtle perinuclear halos, and occasional binucleation. Sharply delineated edematous stromal islands were often observed. Tumor cells were positive for PAX8, negative for CD117, and exhibited diffuse and strong cytokeratin-7 expression. Six patients presented with pT1 tumors. At a median follow-up of 29 months, four patients were alive without recurrence (three patients had died from unrelated causes). All tumors were originally classified as chromophobe renal cell carcinoma, eosinophilic variant (chRCC-eo). While none of the patients presented with known syndromic features, one patient with multiple bilateral LOTs was subsequently found to have a likely pathogenic germline TSC1 mutation. Somatic, likely activating, mutations in MTOR and RHEB were identified in all other evaluable LOTs. As assessed by phospho-S6 and phospho-4E-BP1, mTOR complex 1 (mTORC1) was activated across all cases but to different extent. MTOR mutant LOT exhibited lower levels of mTORC1 activation, possibly related to mTORC1 dimerization and the preservation of a wild-type MTOR copy (retained chromosome 1). Supporting its distinction from related entities, gene expression analyses showed that LOT clustered separately from classic chRCC, chRCC-eo, and RO. In summary, converging mTORC1 pathway mutations, mTORC1 complex activation, and a distinctive gene expression signature along with characteristic phenotypic features support LOT designation as a distinct entity with both syndromic and non-syndromic cases associated with an indolent course.


Asunto(s)
Adenoma Oxifílico , Carcinoma de Células Renales , Neoplasias Renales , Adenoma Oxifílico/genética , Adenoma Oxifílico/patología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Femenino , Células Germinativas/química , Células Germinativas/patología , Humanos , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Mutación , Serina-Treonina Quinasas TOR/genética
10.
Arch Pathol Lab Med ; 146(2): 154-165, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019633

RESUMEN

CONTEXT.­: Active surveillance of small renal masses highlights the need for accurate prognostication of biopsies. OBJECTIVE.­: To comprehensively evaluate the accuracy of biopsies in assessing known prognostic parameters including histologic subtype by comparison with subsequent nephrectomy samples. DESIGN.­: We retrospectively identified patients at University of Texas Southwestern Medical Center, Dallas, Texas, who had a biopsy for a renal mass between 2004-2018. Biopsy samples were evaluated for known prognostic factors such as tumor grade, necrosis, sarcomatoid/rhabdoid change, and BRCA1-associated protein-1 (BAP1) status, which we previously showed is an independent prognostic factor for clear cell renal cell carcinoma. Accuracy was determined by comparison with subsequent analyses of nephrectomy specimens. Statistical analyses were performed to assess biopsy accuracy and correlation with tumor size and pathologic stage. RESULTS.­: From 805 biopsies with a diagnosis of renal neoplasm, 178 had subsequent resection of the biopsied tumor. Concordance rate for histologic subtype was 96.9% (κ [w], 0.90; 95% CI, 0.82-0.99) and excellent for small renal masses (98.8%; κ [w], 0.97; 95% CI, 0.90-1). Amongst the prognostic variables evaluated, BAP1 immunohistochemistry in clear cell renal cell carcinoma had the highest agreement (94.8%; κ [w], 0.83; 95% CI, 0.66-0.99). The presence of 1 or more aggressive features (grade 3-4, tumor necrosis, BAP1 loss, sarcomatoid/rhabdoid change) in a biopsy significantly correlated with pT stage (P = .004). CONCLUSIONS.­: Biopsy analyses showed high accuracy for subtyping renal tumors, but it underestimated several poor prognostic features. Addition of BAP1 for clear cell renal cell carcinoma may increase prognostic accuracy. If validated, routine incorporation of BAP1 immunohistochemistry in clear cell renal cell carcinoma biopsies may refine prognosis and aid in the selection of patients for active surveillance.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Biopsia , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/cirugía , Humanos , Neoplasias Renales/diagnóstico , Neoplasias Renales/cirugía , Nefrectomía , Pronóstico , Estudios Retrospectivos , Proteínas Supresoras de Tumor/análisis , Ubiquitina Tiolesterasa/análisis
11.
Mol Cell ; 81(23): 4924-4941.e10, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34739872

RESUMEN

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.


Asunto(s)
Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , ARN Citoplasmático Pequeño/genética , Anciano , Carcinogénesis , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Transición Epitelial-Mesenquimal , Femenino , Tumores del Estroma Gastrointestinal/genética , Biblioteca de Genes , Técnicas Genéticas , Genómica , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Oncogenes , Ovario/metabolismo , Proteómica , RNA-Seq , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Transcriptoma
12.
J Pathol ; 255(2): 141-154, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34173975

RESUMEN

Stromal-epithelial interactions are critical to the morphogenesis, differentiation, and homeostasis of the prostate, but the molecular identity and anatomy of discrete stromal cell types is poorly understood. Using single-cell RNA sequencing, we identified and validated the in situ localization of three smooth muscle subtypes (prostate smooth muscle, pericytes, and vascular smooth muscle) and two novel fibroblast subtypes in human prostate. Peri-epithelial fibroblasts (APOD+) wrap around epithelial structures, whereas interstitial fibroblasts (C7+) are interspersed in extracellular matrix. In contrast, the mouse displayed three fibroblast subtypes with distinct proximal-distal and lobe-specific distribution patterns. Statistical analysis of mouse and human fibroblasts showed transcriptional correlation between mouse prostate (C3+) and urethral (Lgr5+) fibroblasts and the human interstitial fibroblast subtype. Both urethral fibroblasts (Lgr5+) and ductal fibroblasts (Wnt2+) in the mouse contribute to a proximal Wnt/Tgfb signaling niche that is absent in human prostate. Instead, human peri-epithelial fibroblasts express secreted WNT inhibitors SFRPs and DKK1, which could serve as a buffer against stromal WNT ligands by creating a localized signaling niche around individual prostate glands. We also identified proximal-distal fibroblast density differences in human prostate that could amplify stromal signaling around proximal prostate ducts. In human benign prostatic hyperplasia, fibroblast subtypes upregulate critical immunoregulatory pathways and show distinct distributions in stromal and glandular phenotypes. A detailed taxonomy of leukocytes in benign prostatic hyperplasia reveals an influx of myeloid dendritic cells, T cells and B cells, resembling a mucosal inflammatory disorder. A receptor-ligand interaction analysis of all cell types revealed a central role for fibroblasts in growth factor, morphogen, and chemokine signaling to endothelia, epithelia, and leukocytes. These data are foundational to the development of new therapeutic targets in benign prostatic hyperplasia. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Microambiente Celular/fisiología , Fibroblastos/citología , Próstata/citología , Animales , Matriz Extracelular , Humanos , Masculino , Ratones , Hiperplasia Prostática/patología , Análisis de la Célula Individual
13.
Nat Metab ; 2(11): 1332-1349, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33139957

RESUMEN

Chronic low-grade white adipose tissue (WAT) inflammation is a hallmark of metabolic syndrome in obesity. Here, we demonstrate that a subpopulation of mouse WAT perivascular (PDGFRß+) cells, termed fibro-inflammatory progenitors (FIPs), activate proinflammatory signalling cascades shortly after the onset of high-fat diet feeding and regulate proinflammatory macrophage accumulation in WAT in a TLR4-dependent manner. FIPs activation in obesity is mediated by the downregulation of zinc-finger protein 423 (ZFP423), identified here as a transcriptional corepressor of NF-κB. ZFP423 suppresses the DNA-binding capacity of the p65 subunit of NF-κB by inducing a p300-to-NuRD coregulator switch. Doxycycline-inducible expression of Zfp423 in PDGFRß+ cells suppresses inflammatory signalling in FIPs and attenuates metabolic inflammation of visceral WAT in obesity. Inducible inactivation of Zfp423 in PDGFRß+ cells increases FIP activity, exacerbates adipose macrophage accrual and promotes WAT dysfunction. These studies implicate perivascular mesenchymal cells as important regulators of chronic adipose-tissue inflammation in obesity and identify ZFP423 as a transcriptional break on NF-κB signalling.


Asunto(s)
Tejido Adiposo Blanco/patología , Macrófagos/patología , Células Madre Mesenquimatosas , Obesidad/patología , Animales , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Hipoglucemiantes/farmacología , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo
14.
Bioinform Biol Insights ; 14: 1177932220938063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655276

RESUMEN

The differentiation of embryonic stem cells into various lineages is highly dependent on the chromatin state of the genome and patterns of gene expression. To identify lineage-specific enhancers driving the differentiation of progenitors into pancreatic cells, we used a previously described computational framework called Total Functional Score of Enhancer Elements (TFSEE), which integrates multiple genomic assays that probe both transcriptional and epigenomic states. First, we evaluated and compared TFSEE as an enhancer-calling algorithm with enhancers called using GRO-seq-defined enhancer transcripts (method 1) versus enhancers called using histone modification ChIP-seq data (method 2). Second, we used TFSEE to define the enhancer landscape and identify transcription factors (TFs) that maintain the multipotency of a subpopulation of endodermal stem cells during differentiation into pancreatic lineages. Collectively, our results demonstrate that TFSEE is a robust enhancer-calling algorithm that can be used to perform multilayer genomic data integration to uncover cell type-specific TFs that control lineage-specific enhancers.

15.
Prostate ; 80(11): 872-884, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32497356

RESUMEN

BACKGROUND: Castration-insensitive epithelial progenitors capable of regenerating the prostate have been proposed to be concentrated in the proximal region based on facultative assays. Functional characterization of prostate epithelial populations isolated with individual cell surface markers has failed to provide a consensus on the anatomical and transcriptional identity of proximal prostate progenitors. METHODS: Here, we use single-cell RNA sequencing to obtain a complete transcriptomic profile of all epithelial cells in the mouse prostate and urethra to objectively identify cellular subtypes. Pan-transcriptomic comparison to human prostate cell types identified a mouse equivalent of human urethral luminal cells, which highly expressed putative prostate progenitor markers. Validation of the urethral luminal cell cluster was performed using immunostaining and flow cytometry. RESULTS: Our data reveal that previously identified facultative progenitors marked by Trop2, Sca-1, KRT4, and PSCA are actually luminal epithelial cells of the urethra that extend into the proximal region of the prostate, and are resistant to castration-induced androgen deprivation. Mouse urethral luminal cells were identified to be the equivalent of previously identified human club and hillock cells that similarly extend into proximal prostate ducts. Benign prostatic hyperplasia (BPH) has long been considered an "embryonic reawakening," but the cellular origin of the hyperplastic growth concentrated in the periurethral region is unclear. We demonstrate an increase in urethral luminal cells within glandular nodules from BPH patients. Urethral luminal cells are further increased in patients treated with a 5-α reductase inhibitor. CONCLUSIONS: Our data demonstrate that cells of the proximal prostate that express putative progenitor markers, and are enriched by castration in the proximal prostate, are urethral luminal cells and that these cells may play an important role in the etiology of human BPH.


Asunto(s)
Próstata/citología , Células Madre/citología , Uretra/citología , Adolescente , Adulto , Animales , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Próstata/metabolismo , Células Madre/metabolismo , Uretra/metabolismo , Adulto Joven
16.
Cancer Cell ; 37(4): 584-598.e11, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32220301

RESUMEN

Metastatic prostate cancer is characterized by recurrent genomic copy number alterations that are presumed to contribute to resistance to hormone therapy. We identified CHD1 loss as a cause of antiandrogen resistance in an in vivo small hairpin RNA (shRNA) screen of 730 genes deleted in prostate cancer. ATAC-seq and RNA-seq analyses showed that CHD1 loss resulted in global changes in open and closed chromatin with associated transcriptomic changes. Integrative analysis of this data, together with CRISPR-based functional screening, identified four transcription factors (NR3C1, POU3F2, NR2F1, and TBX2) that contribute to antiandrogen resistance, with associated activation of non-luminal lineage programs. Thus, CHD1 loss results in chromatin dysregulation, thereby establishing a state of transcriptional plasticity that enables the emergence of antiandrogen resistance through heterogeneous mechanisms.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Cromatina/genética , ADN Helicasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , ARN Interferente Pequeño/genética , Receptores Androgénicos/química , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Cromatina/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Mol Cell ; 75(6): 1270-1285.e14, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31351877

RESUMEN

PARP inhibitors (PARPi) prevent cancer cell growth by inducing synthetic lethality with DNA repair defects (e.g., in BRCA1/2 mutant cells). We have identified an alternative pathway for PARPi-mediated growth control in BRCA1/2-intact breast cancer cells involving rDNA transcription and ribosome biogenesis. PARP-1 binds to snoRNAs, which stimulate PARP-1 catalytic activity in the nucleolus independent of DNA damage. Activated PARP-1 ADP-ribosylates DDX21, an RNA helicase that localizes to nucleoli and promotes rDNA transcription when ADP-ribosylated. Treatment with PARPi or mutation of the ADP-ribosylation sites reduces DDX21 nucleolar localization, rDNA transcription, ribosome biogenesis, protein translation, and cell growth. The salient features of this pathway are evident in xenografts in mice and human breast cancer patient samples. Elevated levels of PARP-1 and nucleolar DDX21 are associated with cancer-related outcomes. Our studies provide a mechanistic rationale for efficacy of PARPi in cancer cells lacking defects in DNA repair whose growth is inhibited by PARPi.


Asunto(s)
Neoplasias de la Mama/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ARN Neoplásico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribosomas/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , ARN Helicasas DEAD-box/genética , Reparación del ADN , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , ARN Neoplásico/genética , ARN Nucleolar Pequeño/genética , Ribosomas/genética
18.
PLoS Comput Biol ; 15(6): e1007128, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31233491

RESUMEN

Open, collaborative research is a powerful paradigm that can immensely strengthen the scientific process by integrating broad and diverse expertise. However, traditional research and multi-author writing processes break down at scale. We present new software named Manubot, available at https://manubot.org, to address the challenges of open scholarly writing. Manubot adopts the contribution workflow used by many large-scale open source software projects to enable collaborative authoring of scholarly manuscripts. With Manubot, manuscripts are written in Markdown and stored in a Git repository to precisely track changes over time. By hosting manuscript repositories publicly, such as on GitHub, multiple authors can simultaneously propose and review changes. A cloud service automatically evaluates proposed changes to catch errors. Publication with Manubot is continuous: When a manuscript's source changes, the rendered outputs are rebuilt and republished to a web page. Manubot automates bibliographic tasks by implementing citation by identifier, where users cite persistent identifiers (e.g. DOIs, PubMed IDs, ISBNs, URLs), whose metadata is then retrieved and converted to a user-specified style. Manubot modernizes publishing to align with the ideals of open science by making it transparent, reproducible, immediate, versioned, collaborative, and free of charge.


Asunto(s)
Edición , Programas Informáticos , Escritura , Humanos , Manuscritos Médicos como Asunto
19.
Cell Stem Cell ; 25(1): 69-86.e5, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31080136

RESUMEN

The cardiogenic transcription factors (TFs) Mef2c, Gata4, and Tbx5 can directly reprogram fibroblasts to induced cardiac-like myocytes (iCLMs), presenting a potential source of cells for cardiac repair. While activity of these TFs is enhanced by Hand2 and Akt1, their genomic targets and interactions during reprogramming are not well studied. We performed genome-wide analyses of cardiogenic TF binding and enhancer profiling during cardiac reprogramming. We found that these TFs synergistically activate enhancers highlighted by Mef2c binding sites and that Hand2 and Akt1 coordinately recruit other TFs to enhancer elements. Intriguingly, these enhancer landscapes collectively resemble patterns of enhancer activation during embryonic cardiogenesis. We further constructed a cardiac reprogramming gene regulatory network and found repression of EGFR signaling pathway genes. Consistently, chemical inhibition of EGFR signaling augmented reprogramming. Thus, by defining epigenetic landscapes these findings reveal synergistic transcriptional activation across a broad landscape of cardiac enhancers and key signaling pathways that govern iCLM reprogramming.


Asunto(s)
Receptores ErbB/metabolismo , Fibroblastos/fisiología , Miocitos Cardíacos/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Reprogramación Celular , Receptores ErbB/genética , Factor de Transcripción GATA4/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Factores de Transcripción MEF2/genética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Proteínas de Dominio T Box/genética
20.
Elife ; 82019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31134894

RESUMEN

Cancer evolves through a multistep process that occurs by the temporal accumulation of genetic mutations. Tumor-derived exosomes are emerging contributors to tumorigenesis. To understand how exosomes might contribute to cell transformation, we utilized the classic two-step NIH/3T3 cell transformation assay and observed that exosomes isolated from pancreatic cancer cells, but not normal human cells, can initiate malignant cell transformation and these transformed cells formed tumors in vivo. However, cancer cell exosomes are unable to transform cells alone or to act as a promoter of cell transformation. Utilizing proteomics and exome sequencing, we discovered cancer cell exosomes act as an initiator by inducing random mutations in recipient cells. Cells from the pool of randomly mutated cells are driven to transformation by a classic promoter resulting in foci, each of which encode a unique genetic profile. Our studies describe a novel molecular understanding of how cancer cell exosomes contribute to cell transformation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that major issues remain unresolved (see decision letter).


Asunto(s)
Transformación Celular Neoplásica/patología , Exosomas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Exosomas/química , Genómica , Humanos , Ratones , Células 3T3 NIH , Trasplante de Neoplasias , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA