Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Eur Heart J Cardiovasc Imaging ; 18(5): 510-518, 2017 May 01.
Article En | MEDLINE | ID: mdl-28039209

AIMS: Inflammation drives atherosclerosis complications and is a promising therapeutic target for plaque stabilization. At present, it is unknown whether local stenting approaches can stabilize plaque inflammation in vivo. Here, we investigate whether everolimus-eluting stents (EES) can locally suppress plaque inflammatory protease activity in vivo using intravascular near-infrared fluorescence (NIRF) molecular imaging. METHODS AND RESULTS: Balloon-injured, hyperlipidaemic rabbits with atherosclerosis received non-overlapping EES and bare metal stents (BMS) placement into the infrarenal aorta (n = 7 EES, n = 7 BMS, 3.5 mm diameter x 12 mm length). Four weeks later, rabbits received an injection of the cysteine protease-activatable NIRF imaging agent Prosense VM110. Twenty-four hours later, co-registered intravascular 2D NIRF, X-ray angiography and intravascular ultrasound imaging were performed. In vivo EES-stented plaques contained substantially reduced NIRF inflammatory protease activity compared with untreated plaques and BMS-stented plaques (P = 0.006). Ex vivo macroscopic NIRF imaging of plaque protease activity corroborated the in vivo results (P = 0.003). Histopathology analyses revealed that EES-treated plaques showed reduced neointimal and medial arterial macrophage and cathepsin B expression compared with unstented and BMS-treated plaques. CONCLUSIONS: EES-stenting stabilizes plaque inflammation as assessed by translational intravascular NIRF molecular imaging in vivo. These data further support that EES may provide a local approach for stabilizing inflamed plaques.


Coronary Artery Disease/diagnostic imaging , Drug-Eluting Stents , Everolimus/pharmacology , Inflammation/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Animals , Coronary Artery Disease/pathology , Coronary Artery Disease/therapy , Disease Models, Animal , Inflammation/pathology , Male , Molecular Imaging/methods , Plaque, Atherosclerotic/pathology , Rabbits , Random Allocation , Sensitivity and Specificity , Spectrometry, Fluorescence/methods
2.
IEEE Trans Biomed Eng ; 62(1): 323-30, 2015 Jan.
Article En | MEDLINE | ID: mdl-25181288

Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation.


Artifacts , Clinical Alarms , Electrocardiography/instrumentation , Electrodes , Skin Physiological Phenomena , User-Computer Interface , Animals , Computer Simulation , Computer-Aided Design , Data Display , Equipment Design , Equipment Failure Analysis , Humans , Models, Biological , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio
3.
Phys Med Biol ; 57(20): 6395-406, 2012 Oct 21.
Article En | MEDLINE | ID: mdl-22996051

Intravascular near-infrared fluorescence (iNIRF) imaging can enable the in vivo visualization of biomarkers of vascular pathology, including high-risk plaques. The technique resolves the bio-distribution of systemically administered fluorescent probes with molecular specificity in the vessel wall. However, the geometrical variations that may occur in the distance between fibre-tip and vessel wall can lead to signal intensity variations and challenge quantification. Herein we examined whether the use of anatomical information of the cross-section vessel morphology, obtained from co-registered intravascular ultrasound (IVUS), can lead to quantification improvements when fibre-tip and vessel wall distance variations are present. The algorithm developed employs a photon propagation model derived from phantom experiments that is used to calculate the relative attenuation of fluorescence signals as they are collected over 360° along the vessel wall, and utilizes it to restore accurate fluorescence readings. The findings herein point to quantification improvements when employing hybrid iNIRF, with possible implications to the clinical detection of high-risk plaques or blood vessel theranostics.


Blood Vessels/metabolism , Optical Imaging/methods , Algorithms , Animals , Optical Imaging/instrumentation , Phantoms, Imaging , Photons , Rabbits
4.
J Vis Exp ; (54)2011 Aug 04.
Article En | MEDLINE | ID: mdl-21847078

The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.(1) Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.(4) While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.(2) The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis. Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target-to-background ratios due to reduced autofluorescence in the NIR window. Imaging within the NIR 'window' can substantially improve the potential for in vivo imaging.(2,5) Inflammatory cysteine proteases have been well studied using activatable NIRF probes(10), and play important roles in atherogenesis. Via degradation of the extracellular matrix, cysteine proteases contribute importantly to the progression and complications of atherosclerosis(8). In particular, the cysteine protease, cathepsin B, is highly expressed and colocalizes with macrophages in experimental murine, rabbit, and human atheromata.(3,6,7) In addition, cathepsin B activity in plaques can be sensed in vivo utilizing a previously described 1-D intravascular near-infrared fluorescence technology(6), in conjunction with an injectable nanosensor agent that consists of a poly-lysine polymer backbone derivatized with multiple NIR fluorochromes (VM110/Prosense750, ex/em 750/780nm, VisEn Medical, Woburn, MA) that results in strong intramolecular quenching at baseline.(10) Following targeted enzymatic cleavage by cysteine proteases such as cathepsin B (known to colocalize with plaque macrophages), the fluorochromes separate, resulting in substantial amplification of the NIRF signal. Intravascular detection of NIR fluorescence signal by the utilized novel 2D intravascular NIRF catheter now enables high-resolution, geometrically accurate in vivo detection of cathepsin B activity in inflamed plaque. In vivo molecular imaging of atherosclerosis using catheter-based 2D NIRF imaging, as opposed to a prior 1-D spectroscopic approach,(6) is a novel and promising tool that utilizes augmented protease activity in macrophage-rich plaque to detect vascular inflammation.(11,12) The following research protocol describes the use of an intravascular 2-dimensional NIRF catheter to image and characterize plaque structure utilizing key aspects of plaque biology. It is a translatable platform that when integrated with existing clinical imaging technologies including angiography and intravascular ultrasound (IVUS), offers a unique and novel integrated multimodal molecular imaging technique that distinguishes inflammatory atheromata, and allows detection of intravascular NIRF signals in human-sized coronary arteries.


Atherosclerosis/pathology , Molecular Imaging/methods , Plaque, Atherosclerotic/pathology , Spectrometry, Fluorescence/methods , Spectroscopy, Near-Infrared/methods , Animals , Atherosclerosis/metabolism , Humans , Plaque, Atherosclerotic/metabolism
5.
J Am Coll Cardiol ; 57(25): 2516-26, 2011 Jun 21.
Article En | MEDLINE | ID: mdl-21679853

OBJECTIVES: This study sought to develop a 2-dimensional (2D) intravascular near-infrared fluorescence (NIRF) imaging strategy for investigation of arterial inflammation in coronary-sized vessels. BACKGROUND: Molecular imaging of arterial inflammation could provide new insights into the pathogenesis of acute myocardial infarction stemming from coronary atheromata and implanted stents. Presently, few high-resolution approaches can image inflammation in coronary-sized arteries in vivo. METHODS: A new 2.9-F rotational, automated pullback 2D imaging catheter was engineered and optimized for 360° viewing intravascular NIRF imaging. In conjunction with the cysteine protease-activatable imaging reporter Prosense VM110 (VisEn Medical, Woburn, Massachusetts), intra-arterial 2D NIRF imaging was performed in rabbit aortas with atherosclerosis (n =10) or implanted coronary bare-metal stents (n = 10, 3.5-mm diameter, day 7 post-implantation). Intravascular ultrasound provided coregistered anatomical images of arteries. After sacrifice, specimens underwent ex vivo NIRF imaging, fluorescence microscopy, and histological and immunohistochemical analyses. RESULTS: Imaging of coronary artery-scaled phantoms demonstrated 8-sector angular resolution and submillimeter axial resolution, nanomolar sensitivity to NIR fluorochromes, and modest NIRF light attenuation through blood. High-resolution NIRF images of vessel wall inflammation with signal-to-noise ratios >10 were obtained in real-time through blood, without flushing or occlusion. In atherosclerosis, 2D NIRF, intravascular ultrasound-NIRF fusion, microscopy, and immunoblotting studies provided insight into the spatial distribution of plaque protease activity. In stent-implanted vessels, real-time imaging illuminated an edge-based pattern of stent-induced arterial inflammation. CONCLUSIONS: A new 2D intravascular NIRF imaging strategy provides high-resolution in vivo spatial mapping of arterial inflammation in coronary-sized arteries and reveals increased inflammation-regulated cysteine protease activity in atheromata and stent-induced arterial injury.


Catheterization, Peripheral/instrumentation , Coronary Artery Disease/diagnosis , Inflammation/diagnosis , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Animals , Fluorescent Dyes , Rabbits , Stents
6.
Article En | MEDLINE | ID: mdl-22254510

The use of intravascular imaging modalities for the detection and assessment of atherosclerotic plaque is becoming increasingly useful. Current clinical invasive modalities assess the presence of plaque using anatomical information and include Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT). However, such modalities cannot take into account underlying functional biological information, which can however be revealed with the use of molecular imaging. Consequently, intravascular molecular imaging is emerging as a powerful approach. We have developed such a Near-Infrared Fluorescence (NIRF) imaging system and showcased, in both phantom and in-vivo (rabbit) experiments, its potential to successfully detect inflamed atherosclerotic plaques, using appropriate fluorescent probes. Here, we discuss some limitations of the current system and suggest the combined use of the NIRF and IVUS imaging systems as a means for more accurate assessment of atherosclerotic plaque. We include some results and models that showcase the potential power of this kind of hybrid imaging.


Coronary Artery Disease/diagnosis , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Spectroscopy, Near-Infrared/methods , Subtraction Technique , Ultrasonography, Interventional/methods , Animals , Humans , Image Enhancement/methods , Microscopy, Fluorescence , Reproducibility of Results , Sensitivity and Specificity
...