Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 159: 132-146, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27865785

RESUMEN

Characterizing the role of epigenetic regulation in the mammalian retina is critical for understanding fundamental mechanisms of retinal development and disease. DNA methylation, an epigenetic modifier of genomic DNA, plays an important role in modulating networks of tissue and cell-specific gene expression. However, the impact of DNA methylation on retinal development and homeostasis of retinal neurons remains unclear. Here, we have created a tissue-specific DNA methyltransferase (Dnmt) triple mutant mouse in an effort to characterize the impact of DNA methylation on retinal development and homeostasis. An Rx-Cre transgene was used to drive targeted mutation of all three murine Dnmt genes in the mouse retina encoding major DNA methylation enzymes DNMT1, DNMT3A and DNMT3B. The triple mutant mice represent a hypomorph model since Dnmt1 catalytic activity was still present and excision of Dnmt3a and Dnmt3b had only about 90% efficiency. Mutation of all three Dnmts resulted in global genomic hypomethylation and dramatic reorganization of the photoreceptor and synaptic layers within retina. Transcriptome and proteomic analyses demonstrated enrichment of dysregulated phototransduction and synaptic genes. The 5 mC signal in triple mutant retina was confined to the central heterochromatin but reduced in the peripheral heterochromatin region of photoreceptor nuclei. In addition, we found a reduction of the 5 mC signal in ganglion cell nuclei. Collectively, this data suggests cooperation of all three Dnmts in the formation and homeostasis of photoreceptors and other retinal neurons within the mammalian retina, and highlight the relevance of epigenetic regulation to sensory retinal disorders and vision loss.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN/genética , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Análisis Mutacional de ADN , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Mutantes , Microscopía Electrónica , Modelos Animales , Células Fotorreceptoras de Vertebrados/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Neuronas Retinianas/metabolismo , Neuronas Retinianas/ultraestructura , ADN Metiltransferasa 3B
2.
Stem Cells Dev ; 24(23): 2778-95, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283078

RESUMEN

Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na(+) and K(+) currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for retinal replacement therapies.


Asunto(s)
Células Madre Embrionarias/citología , Neuronas Retinianas/citología , Epitelio Pigmentado de la Retina/citología , Ingeniería de Tejidos , Potenciales de Acción , Células Cultivadas , Células Madre Embrionarias/metabolismo , Humanos , Neurogénesis , Potasio/metabolismo , Neuronas Retinianas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Sodio/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Sinaptofisina/genética , Sinaptofisina/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(40): 14631-6, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246589

RESUMEN

Investigations into the genomic landscape of histone modifications in heterochromatic regions have revealed histone H3 lysine 9 dimethylation (H3K9me2) to be important for differentiation and maintaining cell identity. H3K9me2 is associated with gene silencing and is organized into large repressive domains that exist in close proximity to active genes, indicating the importance of maintenance of proper domain structure. Here we show that nickel, a nonmutagenic environmental carcinogen, disrupted H3K9me2 domains, resulting in the spreading of H3K9me2 into active regions, which was associated with gene silencing. We found weak CCCTC-binding factor (CTCF)-binding sites and reduced CTCF binding at the Ni-disrupted H3K9me2 domain boundaries, suggesting a loss of CTCF-mediated insulation function as a potential reason for domain disruption and spreading. We furthermore show that euchromatin islands, local regions of active chromatin within large H3K9me2 domains, can protect genes from H3K9me2-spreading-associated gene silencing. These results have major implications in understanding H3K9me2 dynamics and the consequences of chromatin domain disruption during pathogenesis.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Níquel/farmacología , Acetilación , Secuencia de Aminoácidos , Sitios de Unión/genética , Western Blotting , Bronquios/citología , Factor de Unión a CCCTC , Línea Celular , Cromatina/genética , Epigénesis Genética/genética , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Genoma Humano/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...