Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831058

RESUMEN

Tumor progression is accompanied by fibrosis, a condition of excessive extracellular matrix accumulation, which is associated with diminished antitumor immune infiltration. Here we demonstrate that tumor-associated macrophages (TAMs) respond to the stiffened fibrotic tumor microenvironment (TME) by initiating a collagen biosynthesis program directed by transforming growth factor-ß. A collateral effect of this programming is an untenable metabolic milieu for productive CD8+ T cell antitumor responses, as collagen-synthesizing macrophages consume environmental arginine, synthesize proline and secrete ornithine that compromises CD8+ T cell function in female breast cancer. Thus, a stiff and fibrotic TME may impede antitumor immunity not only by direct physical exclusion of CD8+ T cells but also through secondary effects of a mechano-metabolic programming of TAMs, which creates an inhospitable metabolic milieu for CD8+ T cells to respond to anticancer immunotherapies.

2.
Mol Cancer Ther ; 20(9): 1508-1520, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210826

RESUMEN

Advanced peritoneal carcinomatosis including high-grade ovarian cancer has poor prognoses and a poor response rate to current checkpoint inhibitor immunotherapies; thus, there is an unmet need for effective therapeutics that would provide benefit to these patients. Here we present the preclinical development of SENTI-101, a cell preparation of bone marrow-derived mesenchymal stromal (also known as stem) cells (MSC), which are engineered to express two potent immune-modulatory cytokines, IL12 and IL21. Intraperitoneal administration of SENTI-101 results in selective tumor-homing and localized and sustained cytokine production in murine models of peritoneal cancer. SENTI-101 has extended half-life, reduced systemic distribution, and improved antitumor activity when compared with recombinant cytokines, suggesting that it is more effective and has lower risk of systemic immunotoxicities. Treatment of tumor-bearing immune-competent mice with a murine surrogate of SENTI-101 (mSENTI-101) results in a potent and localized immune response consistent with increased number and activation of antigen presenting cells, T cells and B cells, which leads to antitumor response and memory-induced long-term immunity. Consistent with this mechanism of action, co-administration of mSENTI-101 with checkpoint inhibitors leads to synergistic improvement in antitumor response. Collectively, these data warrant potential clinical development of SENTI-101 for patients with peritoneal carcinomatosis and high-grade ovarian cancer.Graphical abstract: SENTI-101 schematic and mechanism of actionSENTI-101 is a novel cell-based immunotherapeutic consisting of bone marrow-derived mesenchymal stromal cells (BM-MSC) engineered to express IL12 and IL21 intended for the treatment of peritoneal carcinomatosis including high-grade serous ovarian cancer. Upon intraperitoneal administration, SENTI-101 homes to peritoneal solid tumors and secretes IL12 and IL21 in a localized and sustained fashion. The expression of these two potent cytokines drives tumor infiltration and engagement of multiple components of the immune system: antigen-presenting cells, T cells, and B cells, resulting in durable antitumor immunity in preclinical models of cancer.


Asunto(s)
Interleucina-12/metabolismo , Interleucinas/metabolismo , Melanoma Experimental/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Neoplasias/inmunología , Neoplasias Peritoneales/inmunología , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Neoplasias Peritoneales/metabolismo , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/terapia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Exp Med ; 218(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33822843

RESUMEN

Triple-negative breast cancers (TNBCs) are associated with poor survival mediated by treatment resistance. TNBCs are fibrotic, yet little is known regarding how the extracellular matrix (ECM) evolves following therapy and whether it impacts treatment response. Analysis revealed that while primary untreated TNBCs are surrounded by a rigid stromal microenvironment, chemotherapy-resistant residual tumors inhabit a softer niche. TNBC organoid cultures and xenograft studies showed that organoids interacting with soft ECM exhibit striking resistance to chemotherapy, ionizing radiation, and death receptor ligand TRAIL. A stiff ECM enhanced proapoptotic JNK activity to sensitize cells to treatment, whereas a soft ECM promoted treatment resistance by elevating NF-κB activity and compromising JNK activity. Treatment-resistant residual TNBCs residing within soft stroma had elevated activated NF-κB levels, and disengaging NF-κB activity sensitized tumors in a soft matrix to therapy. Thus, the biophysical properties of the ECM modify treatment response, and agents that modulate stiffness-dependent NF-κB or JNK activity could enhance therapeutic efficacy in patients with TNBC.


Asunto(s)
Matriz Extracelular/metabolismo , FN-kappa B/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Quimioradioterapia , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/efectos de la radiación , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de la radiación
4.
Nat Mater ; 20(4): 548-559, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33257795

RESUMEN

Stromal stiffening accompanies malignancy, compromises treatment and promotes tumour aggression. Clarifying the molecular nature and the factors that regulate stromal stiffening in tumours should identify biomarkers to stratify patients for therapy and interventions to improve outcome. We profiled lysyl hydroxylase-mediated and lysyl oxidase-mediated collagen crosslinks and quantified the greatest abundance of total and complex collagen crosslinks in aggressive human breast cancer subtypes with the stiffest stroma. These tissues harbour the highest number of tumour-associated macrophages, whose therapeutic ablation in experimental models reduced metastasis, and decreased collagen crosslinks and stromal stiffening. Epithelial-targeted expression of the crosslinking enzyme, lysyl oxidase, had no impact on collagen crosslinking in PyMT mammary tumours, whereas stromal cell targeting did. Stromal cells in microdissected human tumours expressed the highest level of collagen crosslinking enzymes. Immunohistochemical analysis of biopsies from a cohort of patients with breast cancer revealed that stromal expression of lysyl hydroxylase 2, an enzyme that induces hydroxylysine aldehyde-derived collagen crosslinks and stromal stiffening, correlated significantly with disease specific mortality. The findings link tissue inflammation, stromal cell-mediated collagen crosslinking and stiffening to tumour aggression and identify lysyl hydroxylase 2 as a stromal biomarker.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Colágeno/metabolismo , Células del Estroma/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Adulto , Biopsia , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Proteína-Lisina 6-Oxidasa/metabolismo , Células del Estroma/patología
5.
Nat Cell Biol ; 20(10): 1203-1214, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202050

RESUMEN

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx. Studies showed that a bulky glycocalyx potentiates integrin mechanosignalling and tissue tension and promotes a mesenchymal, stem-like phenotype in GBMs. Gain- and loss-of-function studies implicated integrin mechanosignalling as an inducer of GBM growth, survival, invasion and treatment resistance, and a mesenchymal, stem-like phenotype. Mesenchymal-like GBMs were highly contractile and expressed elevated levels of glycoproteins that expanded their glycocalyx, and they were surrounded by a stiff extracellular matrix that potentiated integrin mechanosignalling. Our findings suggest that there is a dynamic and reciprocal link between integrin mechanosignalling and a bulky glycocalyx, implying a causal link towards a mesenchymal, stem-like phenotype in GBMs. Strategies to ameliorate GBM tissue tension offer a therapeutic approach to reduce mortality due to GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicocálix/metabolismo , Integrinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Supervivencia Celular/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Tensión Superficial , Temozolomida/uso terapéutico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Immunol Regen Med ; 1: 67-75, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908331

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a severe fibrotic component that compromises treatment, alters the immune cell profile and contributes to patient mortality. It has been shown that early on in this process, dynamic changes in tissue biomechanics play an integral role in supporting pancreatic cancer development and progression. Despite the acknowledgement of its importance, a granular view of how stromal composition changes during the course of PDAC progression remains largely unknown. To mimic the quasi-mesenchymal phenotype and pronounced desmoplastic response observed clinically, we utilized a genetically engineered mouse model of PDAC that is driven by a KrasG12D mutation and loss of Tgfbr2 expression. Application of compartment resolved proteomics revealed that PDAC progression in this KTC model is associated with dynamic stromal alterations that are indicative of a wound healing program. We identified an early provisional matricellular fibrosis that was accompanied by markers of macrophage activation and infiltration, consistent with the inflammatory phase of wound healing. At 20 weeks a proliferative phenotype was observed with increased fibroblast markers, further collagen deposition and loss of basement membrane and native cell markers.

7.
Cancer Discov ; 7(2): 177-187, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27974414

RESUMEN

Patients with postpartum breast cancer are at increased risk for metastasis compared with age-matched nulliparous or pregnant patients. Here, we address whether circulating tumor cells have a metastatic advantage in the postpartum host and find the postlactation rodent liver preferentially supports metastasis. Upon weaning, we observed liver weight loss, hepatocyte apoptosis, extracellular matrix remodeling including deposition of collagen and tenascin-C, and myeloid cell influx, data consistent with weaning-induced liver involution and establishment of a prometastatic microenvironment. Using intracardiac and intraportal metastasis models, we observed increased liver metastasis in post-weaning BALB/c mice compared with nulliparous controls. Human relevance is suggested by a ∼3-fold increase in liver metastasis in patients with postpartum breast cancer (n = 564) and by liver-specific tropism (n = 117). In sum, our data reveal a previously unknown biology of the rodent liver, weaning-induced liver involution, which may provide insight into the increased liver metastasis and poor prognosis of women diagnosed with postpartum breast cancer. SIGNIFICANCE: We find that patients with postpartum breast cancer are at elevated risk for liver metastasis. We identify a previously unrecognized biology, namely weaning-induced liver involution, that establishes a prometastatic microenvironment, and which may account in part for the poor prognosis of patients with postpartum breast cancer. Cancer Discov; 7(2); 177-87. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 115.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Adulto , Animales , Femenino , Humanos , Neoplasias Hepáticas/etiología , Células Neoplásicas Circulantes/patología , Periodo Posparto , Ratas , Microambiente Tumoral , Destete , Adulto Joven
8.
Int J Biochem Cell Biol ; 81(Pt A): 223-232, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27771439

RESUMEN

Normal epithelium exists within a dynamic extracellular matrix (ECM) that is tuned to regulate tissue specific epithelial cell function. As such, ECM contributes to tissue homeostasis, differentiation, and disease, including cancer. Though it is now recognized that the functional unit of normal and transformed epithelium is the epithelial cell and its adjacent ECM, we lack a basic understanding of tissue-specific ECM composition and abundance, as well as how physiologic changes in ECM impact cancer risk and outcomes. While traditional proteomic techniques have advanced to robustly identify ECM proteins within tissues, methods to determine absolute abundance have lagged. Here, with a focus on tissues relevant to breast cancer, we utilize mass spectrometry methods optimized for absolute quantitative ECM analysis. Employing an extensive protein extraction and digestion method, combined with stable isotope labeled Quantitative conCATamer (QconCAT) peptides that serve as internal standards for absolute quantification of protein, we quantify 98 ECM, ECM-associated, and cellular proteins in a single analytical run. In rodent models, we applied this approach to the primary site of breast cancer, the normal mammary gland, as well as a common and particularly deadly site of breast cancer metastasis, the liver. We find that mammary gland and liver have distinct ECM abundance and relative composition. Further, we show mammary gland ECM abundance and relative compositions differ across the reproductive cycle, with the most dramatic changes occurring during the pro-tumorigenic window of weaning-induced involution. Combined, this work suggests ECM candidates for investigation of breast cancer progression and metastasis, particularly in postpartum breast cancers that are characterized by high metastatic rates. Finally, we suggest that with use of absolute quantitative ECM proteomics to characterize tissues of interest, it will be possible to reconstruct more relevant in vitro models to investigate tumor-ECM dynamics at higher resolution.


Asunto(s)
Microambiente Celular , Matriz Extracelular/metabolismo , Hígado/citología , Glándulas Mamarias Animales/citología , Proteómica , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Reproducción
9.
J Cell Sci ; 126(Pt 18): 4108-10, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843613

RESUMEN

The reduction in breast cancer risk attributed to early-age pregnancy is mediated in part by changes in the mammary epithelium. Here, we address the role of the mammary stroma in this protection. Utilizing tumor cells capable of transitioning from indolent to proliferative or invasive states, we demonstrate that mammary extracellular matrix (ECM) from parous rats (parous matrix) decreases tumor growth and impedes cellular phenotypes associated with tumor cell invasion compared with that observed using nulliparous matrix. Proteomic analysis identifies an increased abundance of collagen I in parous matrix, an observation extended to breast tissue of parous women. Given the pro-tumorigenic attributes of fibrillar collagen, these results were unexpected. Second-harmonic generation imaging and atomic force microscopy revealed that the abundant collagen observed in the mammary glands of parous rats is less linearized and associated with a decrease in stromal stiffness, implicating collagen organization and stiffness in parity-induced protection. Using 3D cell culture models, we demonstrate that linearized (fibrillar) collagen I induces cellular phenotypes consistent with an invasive behavior in mammary tumor cells and alters the subcellular distribution of ß1 integrin. Conversely, high-density non-fibrillar collagen I induces tumor-suppressive attributes, including increases in junctional E-cadherin in tumor cells, upregulation of genes encoding components of cell-cell junctions, and downregulation of mesenchymal-specific and metalloproteinase-encoding genes. These data show that collagen organization, rather than density alone, is a key contributor to the invasive phenotype. Furthermore, our data show that parity alters the composition and organization of mammary ECM, particularly fibrillar collagen, in a manner consistent with tumor suppression.


Asunto(s)
Neoplasias de la Mama/etiología , Colágeno/ultraestructura , Matriz Extracelular/ultraestructura , Neoplasias Mamarias Animales/etiología , Animales , Neoplasias de la Mama/patología , Cadherinas , Línea Celular Tumoral , Colágeno/fisiología , Matriz Extracelular/fisiología , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Embarazo , Ratas
10.
Nat Cell Biol ; 15(6): 570-2, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23728464

RESUMEN

Cancer-associated fibroblasts (CAFs) may contribute to tissue tension and cancer progression by increasing extracellular matrix (ECM) deposition and remodelling. However, how CAFs become activated and their roles in tumour mechanics have remained unclear. YAP is now identified as a tension-stimulated CAF activator that promotes malignancy through a mechanically reinforced feed-forward loop.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Fibroblastos/fisiología , Mecanotransducción Celular , Fosfoproteínas/metabolismo , Animales , Proteínas de Ciclo Celular , Femenino , Humanos , Proteínas Señalizadoras YAP
11.
J Mammary Gland Biol Neoplasia ; 15(3): 301-18, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20811805

RESUMEN

The mammary gland is an excellent model system to study the interplay between stroma and epithelial cells because of the gland's unique postnatal development and its distinct functional states. This review focuses on the contribution of the extracellular matrix (ECM) to stromal-epithelial interactions in the mammary gland. We describe how ECM physical properties, protein composition, and proteolytic state impact mammary gland architecture as well as provide instructive cues that influence the function of mammary epithelial cells during pubertal gland development and throughout adulthood. Further, based on recent proteomic analyses of mammary ECM, we describe known mammary ECM proteins and their potential functions, as well as describe several ECM proteins not previously recognized in this organ. ECM proteins are discussed in the context of the morphologically-distinct stromal subcompartments: the basal lamina, the intra- and interlobular stroma, and the fibrous connective tissue. Future studies aimed at in-depth qualitative and quantitative characterization of mammary ECM within these various subcompartments is required to better elucidate the function of ECM in normal as well as in pathological breast tissue.


Asunto(s)
Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Células del Estroma/metabolismo , Animales , Comunicación Celular , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Glándulas Mamarias Humanas/crecimiento & desarrollo
12.
Mol Cell Proteomics ; 8(7): 1648-57, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19351662

RESUMEN

Epithelial cell behavior is coordinated by the composition of the surrounding extracellular matrix (ECM); thus ECM protein identification is critical for understanding normal biology and disease states. Proteomic analyses of ECM proteins have been hindered by the insoluble and digestion-resistant nature of ECM. Here we explore the utility of combining rapid ultrasonication- and surfactant-assisted digestion for the detailed proteomics analysis of ECM samples. When compared with traditional overnight digestion, this optimized method dramatically improved the sequence coverage for collagen I, revealed the presence of hundreds of previously unidentified proteins in Matrigel, and identified a protein profile for ECM isolated from rat mammary glands that was substantially different from that found in Matrigel. In a three-dimensional culture assay to investigate epithelial cell-ECM interactions, mammary epithelial cells were found to undergo extensive branching morphogenesis when plated with mammary gland-derived matrix in comparison with Matrigel. Cumulatively these data highlight the tissue-specific nature of ECM composition and function and underscore the need for optimized techniques, such as those described here, for the proteomics characterization of ECM samples.


Asunto(s)
Proteínas de la Matriz Extracelular/química , Proteoma/análisis , Soluciones/química , Ultrasonido , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Cromatografía Liquida/métodos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Glándulas Mamarias Animales/química , Glándulas Mamarias Animales/citología , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
13.
Breast Cancer Res ; 11(1): R5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19173736

RESUMEN

INTRODUCTION: The functional unit of the mammary gland has been defined as the epithelial cell plus its microenvironment, a hypothesis that predicts changes in epithelial cell function will be accompanied by concurrent changes in mammary stroma. To test this hypothesis, the question was addressed of whether mammary stroma is functionally altered by the anti-oestrogen drug tamoxifen. METHODS: Forty female rats at 70 days of age were randomised to two groups of 20 and treated with 1.0 mg/kg tamoxifen or vehicle subcutaneously daily for 30 days, followed by a three-day wash out period. Mammary tissue was harvested and effects of tamoxifen on mammary epithelium and stroma determined. RESULTS: As expected, tamoxifen suppressed mammary alveolar development and mammary epithelial cell proliferation. Primary mammary fibroblasts isolated from tamoxifen-treated rats displayed a three-fold decrease in motility and incorporated less fibronectin in their substratum in comparison to control fibroblasts; attributes indicative of fibroblast quiescence. Immunohistochemistry analysis of CD68, a macrophage lysosomal marker, demonstrated a reduction in macrophage infiltration in mammary glands of tamoxifen-treated rats. Proteomic analyses by mass spectrometry identified several extracellular matrix (ECM) proteins with expression levels with tamoxifen treatment that were validated by Western blot. Mammary tissue from tamoxifen-treated rats had decreased fibronectin and increased collagen 1 levels. Further, ECM proteolysis was reduced in tamoxifen-treated rats as detected by reductions in fibronectin, laminin 1, laminin 5 and collagen 1 cleavage fragments. Consistent with suppression in ECM proteolysis with tamoxifen treatment, matrix metalloproteinase-2 levels and activity were decreased. Biochemically extracted mammary ECM from tamoxifen-treated rats suppressed in vitro macrophage motility, which was rescued by the addition of proteolysed collagen or fibronectin. Mammary ECM from tamoxifen-treated rats also suppressed breast tumour cell motility, invasion and haptotaxis, reduced organoid size in 3-dimensional culture and blocked tumour promotion in an orthotopic xenograft model; effects which could be partially reversed by the addition of exogenous fibronectin. CONCLUSIONS: These data support the hypothesis that mammary stroma responds to tamoxifen treatment in concert with the epithelium and remodels to a microenvironment inhibitory to tumour cell progression. Reduced fibronectin levels and reduced ECM turnover appear to be hallmarks of the quiescent mammary microenvironment. These data may provide insight into attributes of a mammary microenvironment that facilitate tumour dormancy.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Matriz Extracelular/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Tamoxifeno/farmacología , Animales , Biomarcadores/metabolismo , Western Blotting , Técnicas de Cultivo de Célula , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Desnudos , Invasividad Neoplásica , Proteómica , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...