Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 13(12): 1200-1206, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34635814

RESUMEN

The micron-scale movement of biomolecules along supramolecular pathways, mastered by nature, is a remarkable system requiring strong yet reversible interactions between components under the action of a suitable stimulus. Responsive microscopic systems using a variety of stimuli have demonstrated impressive relative molecular motion. However, locating the position of a movable object that travels along self-assembled fibres under an irresistible force has yet to be achieved. Here, we describe a purely supramolecular system where a molecular 'traveller' moves along a 'path' over several microns when irradiated with visible light. Real-time imaging of the motion in the solvated state using total internal reflection fluorescence microscopy shows that anionic porphyrin molecules move along the fibres of a bis-imidazolium gel upon irradiation. Slight solvent changes mean movement and restructuring of the fibres giving microtoroids, indicating control of motion by fibre mechanics with solvent composition. The insight provided here may lead to the development of artificial travellers that can perform catalytic and other functions.

2.
Phys Chem Chem Phys ; 19(41): 28225-28231, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29027550

RESUMEN

Ultrafast intersystem crossing of carbonylpyrenes in chloroform was investigated by femtosecond pump-probe spectroscopy. When compared to the dominant fluorescence decay pathway in pyrene, carbonyl functionalized pyrenes display near-unity triplet formation upon photoexcitation. The excited singlet state (Sp) undergoes rapid intersystem crossing (kISC) concomitantly with internal conversion (kIC) to lower excited singlet states (Sn) within a timescale of 5-11 ps (1/τ2 = kIC + kISC). Furthermore, intersystem crossing from lower excited singlet states (Sn) proceeds through coupling with receiver triplet states, eventually leading to high triplet quantum yields (ΦT = 97%; tetraacetylpyrene). Followed by internal conversion in the triplet manifolds, phosphorescence decay on a microsecond timescale is observed from the emitter triplet state.

3.
Chem Sci ; 8(3): 1776-1782, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694952

RESUMEN

We describe the design, bottom-up synthesis and X-ray single crystal structure of systematically twisted aromatics 1c and 2d for efficient intersystem crossing. Steric congestion at the cove region creates a nonplanar geometry that induces a significant yield of triplet excited states in the electron-poor core-twisted aromatics 1c and 2d. A systematic increase in the number of twisted regions in 1c and 2d results in a concomitant enhancement in the rate and yield of intersystem crossing, monitored using femtosecond and nanosecond transient absorption spectroscopy. Time-resolved absorption spectroscopic measurements display enhanced triplet quantum yields (Φ T = 10 ± 1% for 1c and Φ T = 30 ± 2% for 2d) in the twisted aromatics when compared to a negligible Φ T (<1%) in the planar analog 3c. Twist-induced spin-orbit coupling via activated out-of-plane C-H/C[double bond, length as m-dash]C vibrations can facilitate the formation of triplet excited states in twisted aromatics 1c and 2d, in contrast to the negligible intersystem crossing in the planar analog 3c. The ease of synthesis, high solubility, access to triplet excited states and strong electron affinity make such imide functionalized core-twisted aromatics desirable materials for organic electronics such as solar cells.

4.
J Phys Chem Lett ; 7(22): 4751-4756, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27934208

RESUMEN

Twisted donor-on-donor and acceptor-on-acceptor bicontinuous assembly in all-carbon pyren-1-ylaceanthrylene (PA) dyad extends the survival time of the photoinduced radical ion-pair intermediates. Aceanthrylene, a functional analog of C70, acts as a versatile electron acceptor owing to its high electron affinity and visible light absorption. Antithetical trajectories of the excitons in the nonparallel π-ways led to persistent radical ion-pair intermediates in aggregated (τcrA ∼ 1.28 ns) vs monomeric (τcrM ≤ 110 fs) PA dyad as observed using femtosecond transient absorption spectroscopy. Marcus theory of charge transfer rates predicts an ambipolar transport characteristic in crystalline PA, thereby endorsing PA as an all-carbon DA hybrid for nonfullerene photovoltaic applications.

5.
J Am Chem Soc ; 137(50): 15604-7, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26440563

RESUMEN

We report a nonparallel stacked arrangement of donor­acceptor (D­A) pairs for prolonging the lifetime of photoinduced charge-separated states. Hydrogen­hydrogen steric repulsion in naphthalimide-naphthalene (NIN) dyad destabilizes the planar geometry between the constituent units in solution/ground state. Sterically imposed nonplanar geometry of the dyad allows the access of nonparallel arrangement of the donor and acceptor stacks having triclinic space group in the crystalline state. Antiparallel trajectory of excitons in nonparallel D­A stacks can result in lower probability of geminate charge recombination, upon photoexcitation, thereby resulting in a long-lived charge-separated state. Upon photoexcitation of the NIN dyad, electron transfer from naphthalene to the singlet excited state of naphthalimide moiety results in radical ion pair intermediates that survive >10,000-fold longer in the aggregated state (τcra > 1.2 ns) as compared to that of monomeric dyad (τcrm < 110 fs), monitored using femtosecond transient absorption spectroscopy.

7.
Phys Chem Chem Phys ; 14(44): 15282-5, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23051919

RESUMEN

With an increase in temperature, an unprecedented restoration of symmetry in the symmetry breaking excited state charge transfer is observed in a geminal pair of near-orthogonally connected perylenimide dimers. Such restoration of symmetry could be attributed to the interchromophoric planarization and/or loss of solvation asymmetry at elevated temperature resulting in enhanced fluorescence quantum yield.


Asunto(s)
Imidas/química , Perileno/análogos & derivados , Temperatura , Dimerización , Imidas/síntesis química , Perileno/síntesis química , Perileno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA