Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
bioRxiv ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38895430

Proteins are dynamic systems whose structural preferences determine their function. Unfortunately, building atomically detailed models of protein structural ensembles remains challenging, limiting our understanding of the relationships between sequence, structure, and function. Combining single molecule Förster resonance energy transfer (smFRET) experiments with molecular dynamics simulations could provide experimentally grounded, all-atom models of a protein's structural ensemble. However, agreement between the two techniques is often insufficient to achieve this goal. Here, we explore whether accounting for important experimental details like averaging across structures sampled during a given smFRET measurement is responsible for this apparent discrepancy. We present an approach to account for this time-averaging by leveraging the kinetic information available from Markov state models of a protein's dynamics. This allows us to accurately assess which timescales are averaged during an experiment. We find this approach significantly improves agreement between simulations and experiments in proteins with varying degrees of dynamics, including the well-ordered protein T4 lysozyme, the partially disordered protein apolipoprotein E (ApoE), and a disordered amyloid protein (Aß40). We find evidence for hidden states that are not apparent in smFRET experiments because of time averaging with other structures, akin to states in fast exchange in NMR, and evaluate different force fields. Finally, we show how remaining discrepancies between computations and experiments can be used to guide additional simulations and build structural models for states that were previously unaccounted for. We expect our approach will enable combining simulations and experiments to understand the link between sequence, structure, and function in many settings.

2.
Proc Natl Acad Sci U S A ; 120(7): e2215371120, 2023 02 14.
Article En | MEDLINE | ID: mdl-36749730

The ε4-allele variant of apolipoprotein E (ApoE4) is the strongest genetic risk factor for Alzheimer's disease, although it only differs from its neutral counterpart ApoE3 by a single amino acid substitution. While ApoE4 influences the formation of plaques and neurofibrillary tangles, the structural determinants of pathogenicity remain undetermined due to limited structural information. Previous studies have led to conflicting models of the C-terminal region positioning with respect to the N-terminal domain across isoforms largely because the data are potentially confounded by the presence of heterogeneous oligomers. Here, we apply a combination of single-molecule spectroscopy and molecular dynamics simulations to construct an atomically detailed model of monomeric ApoE4 and probe the effect of lipid association. Importantly, our approach overcomes previous limitations by allowing us to work at picomolar concentrations where only the monomer is present. Our data reveal that ApoE4 is far more disordered and extended than previously thought and retains significant conformational heterogeneity after binding lipids. Comparing the proximity of the N- and C-terminal domains across the three major isoforms (ApoE4, ApoE3, and ApoE2) suggests that all maintain heterogeneous conformations in their monomeric form, with ApoE2 adopting a slightly more compact ensemble. Overall, these data provide a foundation for understanding how ApoE4 differs from nonpathogenic and protective variants of the protein.


Apolipoprotein E4 , Apolipoproteins E , Apolipoprotein E4/genetics , Apolipoprotein E3/chemistry , Apolipoprotein E2 , Protein Conformation , Protein Isoforms/metabolism
3.
Nat Commun ; 13(1): 2269, 2022 04 27.
Article En | MEDLINE | ID: mdl-35477718

Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola's replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins.


Ebolavirus , Hemorrhagic Fever, Ebola , DNA Viruses/genetics , Ebolavirus/genetics , Humans , RNA, Double-Stranded/genetics , Viral Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics
4.
Phys Rev E ; 105(3-1): 034405, 2022 Mar.
Article En | MEDLINE | ID: mdl-35428051

Molecular motors convert chemical potential energy into mechanical work and perform a great number of critical biological functions. Examples include the polymerization and manipulation of nucleic acids, the generation of cellular motility and contractility, the formation and maintenance of cell shape, and the transport of materials within cells. The mechanisms underlying these molecular machines are varied, but are almost always considered in the context of a single kinetic pathway that describes motor stepping. However, the multidimensional nature of protein energy landscapes suggests the possibility of multiple reaction pathways connecting two states. Here we investigate the properties of a hypothetical molecular motor able to utilize parallel translocation mechanisms. We explore motor velocity and force dependence as a function of the energy landscape of each path and reveal the potential for such a mechanism to result in negative differential conductance. More specifically, regimes exist where increasing opposing force leads to increased velocity and an optimum load for motor function. We explore how the presence of this optimum depends on the rates of the individual paths and show that the distribution of stepping times characterized by the randomness parameter may be used to test for parallel path mechanisms. Last, we caution that experimental data consisting solely of measurements of velocity as a function of ATP concentration and force cannot be used to eliminate the possibility of such a parallel path mechanism.

5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34799442

Understanding the functional role of protein-excited states has important implications in protein design and drug discovery. However, because these states are difficult to find and study, it is still unclear if excited states simply result from thermal fluctuations and generally detract from function or if these states can actually enhance protein function. To investigate this question, we consider excited states in ß-lactamases and particularly a subset of states containing a cryptic pocket which forms under the Ω-loop. Given the known importance of the Ω-loop and the presence of this pocket in at least two homologs, we hypothesized that these excited states enhance enzyme activity. Using thiol-labeling assays to probe Ω-loop pocket dynamics and kinetic assays to probe activity, we find that while this pocket is not completely conserved across ß-lactamase homologs, those with the Ω-loop pocket have a higher activity against the substrate benzylpenicillin. We also find that this is true for TEM ß-lactamase variants with greater open Ω-loop pocket populations. We further investigate the open population using a combination of NMR chemical exchange saturation transfer experiments and molecular dynamics simulations. To test our understanding of the Ω-loop pocket's functional role, we designed mutations to enhance/suppress pocket opening and observed that benzylpenicillin activity is proportional to the probability of pocket opening in our designed variants. The work described here suggests that excited states containing cryptic pockets can be advantageous for function and may be favored by natural selection, increasing the potential utility of such cryptic pockets as drug targets.


Penicillinase/chemistry , Penicillinase/drug effects , beta-Lactamases/chemistry , beta-Lactamases/pharmacology , Binding Sites , Escherichia coli , Escherichia coli Proteins , Molecular Dynamics Simulation , Mutation , Penicillin G/chemistry , Penicillin G/metabolism , Penicillinase/metabolism , Protein Conformation , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , beta-Lactamases/genetics
6.
Nat Chem ; 13(7): 651-659, 2021 07.
Article En | MEDLINE | ID: mdl-34031561

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate 0.1 seconds of the viral proteome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimentally, explaining and predicting the existence of 'cryptic' epitopes. Different spike variants modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.


COVID-19/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Binding Sites , COVID-19/transmission , Computer Simulation , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Proteome , Spike Glycoprotein, Coronavirus/chemistry
7.
bioRxiv ; 2020 Oct 07.
Article En | MEDLINE | ID: mdl-32637963

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression, and replication, which depend on the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the Folding@home distributed computing project to create the first exascale computer and simulate an unprecedented 0.1 seconds of the viral proteome. Our simulations capture dramatic opening of the apo Spike complex, far beyond that seen experimentally, which explains and successfully predicts the existence of 'cryptic' epitopes. Different Spike homologues modulate the probabilities of open versus closed structures, balancing receptor binding and immune evasion. We also observe dramatic conformational changes across the proteome, which reveal over 50 'cryptic' pockets that expand targeting options for the design of antivirals. All data and models are freely available online, providing a quantitative structural atlas.

...