Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Clin Transl Med ; 14(3): e1607, 2024 03.
Article En | MEDLINE | ID: mdl-38488469

Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.


Dependovirus , Genetic Therapy , Dependovirus/genetics , Dependovirus/metabolism , Transgenes/genetics , Genetic Vectors/genetics
2.
J Med Virol ; 95(1): e28252, 2023 01.
Article En | MEDLINE | ID: mdl-36271727

Zika virus (ZIKV) is one of several examples of an unprecedented pandemic spread and against which there is currently no suitable vaccine or treatment. Here, we constructed and characterized recombinant baculovirus-derived ZIKV-like particles (Zika VLPs) to study ZIKV-antibody interactions. These VLPs, uniquely consisted of the full-length ZIKV capsid (C), pre-membrane (prM), and envelope (E) proteins with either: a) the viral nonstructural NS2B and NS3 protease unit under one or two different promoters or b) an alternative host-cell furin protease encoding cleavage sequence inserted between the C and prM genes, together with lobster tropomyosin leader and honeybee signal sequences with one promoter for increased extracellular secretion. All these Zika VLPs displayed typical virion morphology in transmission electron microscopic analysis when expressed in both insect (Sf9) and mammalian (HEK293T) cells and no uncleaved prM glycoprotein was detected, as are present on immature virions. The importance of glycosylation of the E glycoprotein was shown by the effects on both polyclonal and monoclonal antibody reactions after these N-linked carbohydrate residues were disrupted by oxidation or enzymatic cleavage. Importantly, the construct which contained the host-cell furin protease cleavage sequence together with a lobster tropomyosin leader and honeybee signal sequences under one promoter produced higher Zika VLP titers and protein concentrations and which can now be tested as a superior construct in multifunctional diagnostic (ELISA and neutralization/antibody-dependent enhancement) assays and immunogenic assessments possibly leading to vaccine trials.


Zika Virus Infection , Zika Virus , Humans , Animals , Zika Virus Infection/prevention & control , Furin/metabolism , Baculoviridae/genetics , HEK293 Cells , Tropomyosin/metabolism , Protein Sorting Signals , Viral Envelope Proteins/genetics , Mammals/metabolism
3.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article En | MEDLINE | ID: mdl-38203368

Inherited retinal disorders (IRD) have become a primary focus of gene therapy research since the success of adeno-associated virus-based therapeutics (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2). Dozens of monogenic IRDs could be potentially treated with a similar approach using an adeno-associated virus (AAV) to transfer a functional gene into the retina. Here, we present the results of the design, production, and in vitro testing of the AAV serotype 9 (AAV9) vector carrying the codon-optimized (co) copy of aryl hydrocarbon receptor-interacting protein like-1 (AIPL1) as a possible treatment for LCA4. The pAAV-AIPL1co was able to successfully transduce retinal pigment epithelium cells (ARPE-19) and initiate the expression of human AIPL1. Intriguingly, cells transduced with AAV9-AIPL1co showed much less antiviral response than AAV9-AIPL1wt (wild-type AIPL1) transduced. RNA-sequencing (RNA-seq) analysis of trans-differentiated ARPE-19 cells transduced with AAV9-AIPL1co demonstrated significant differences in the expression of genes involved in the innate immune response. In contrast, AAV9-AIPL1wt induced the prominent activation of multiple interferon-stimulated genes. The key part of the possible regulatory molecular mechanism is the activation of dsRNA-responsive antiviral oligoadenylate synthetases, and a significant increase in the level of histone coding genes' transcripts overrepresented in RNA-seq data (i.e., H1, H2A, H2B, H3, and H4). The RNA-seq data suggests that AAV9-AIPL1co exhibiting less immunogenicity than AAV9-AIPL1wt can be used for potency testing, using relevant animal models to develop future therapeutics for LCA4.


Dependovirus , Neurons , Animals , Humans , RNA-Seq , Cell Differentiation , Sequence Analysis, RNA , Dependovirus/genetics , Antiviral Agents , Adaptor Proteins, Signal Transducing
4.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article En | MEDLINE | ID: mdl-38203382

Anti-cancer therapy based on oncolytic viruses (OVs) is a targeted approach that takes advantage of OVs' ability to selectively infect and replicate in tumor cells, activate the host immune response, and destroy malignant cells over healthy ones. Vesicular stomatitis virus (VSV) is known for its wide range of advantages: a lack of pre-existing immunity, a genome that is easily amenable to manipulation, and rapid growth to high titers in a broad range of cell lines, to name a few. VSV-induced tumor immunity can be enhanced by the delivery of immunostimulatory cytokines. The targeted cytokine delivery to tumors avoids the significant toxicity associated with systemic delivery while also boosting the immune response. To demonstrate this enhanced effect on both tumor growth and survival, a novel recombinant VSV (rVSV)-mIL12-mGMCSF, co-expressing mouse IL-12 (interleukin-12) and GM-CSF (granulocyte-macrophage colony-stimulating factor), was tested alongside rVSV-dM51-GFP (rVSV-GFP) that was injected intratumorally in a syngeneic in vivo C57BL/6 mouse model infused subcutaneously with B16-F10 melanoma cells. The pilot study tested the effect of two viral injections 4 days apart and demonstrated that treatment with the two rVSVs resulted in partial inhibition of tumor growth (TGII of around 40%) and an increased survival rate in animals from the treatment groups. The effect of the two VSVs on immune cell populations will be investigated in future in vivo studies with an optimized experimental design with multiple higher viral doses, as a lack of this information presents a limitation of this study.


Immunotherapy , Melanoma, Experimental , Animals , Mice , Mice, Inbred C57BL , Pilot Projects , Immunization , Cytokines , Interleukin-12/genetics , Melanoma, Experimental/therapy
5.
Biotechnol Adv ; 60: 108005, 2022 11.
Article En | MEDLINE | ID: mdl-35690273

Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.


Neoplasms , Single-Domain Antibodies , Genetic Vectors , Humans , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Optogenetics
6.
Methods Mol Biol ; 2503: 159-167, 2022.
Article En | MEDLINE | ID: mdl-35575893

Adsorption of red blood cells (hemadsorption) on the surface of macrophages infected with African swine fever virus (ASFV) is a unique phenomenon allowing to determine virus infectious titer in hemadsorption unit (HAU) and differentiate virus strains phenotypically. In the meantime, hemadsorption of particular ASFV strain can by inhibited by homologous anti-ASFV serum containing antibody to the serogroup-specific virus protein (CD2v). Here, we describe a hemadsorption inhibition assay (HADIA) to phenotype ASFV strains to one of the known nine serogroups using blood-derived swine macrophages. The HADIA is a powerful method in the ASFV immunopathology and vaccine research since it provides additional antigenic and phenotypic characteristics of virus strains that can't be defined by other assays.


African Swine Fever Virus , African Swine Fever , African Swine Fever/prevention & control , African Swine Fever Virus/genetics , Animals , Hemadsorption , Serogroup , Swine , Viral Proteins/genetics
7.
Viruses ; 13(7)2021 06 29.
Article En | MEDLINE | ID: mdl-34209981

Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.


Clinical Trials as Topic , Immunotherapy/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Combined Modality Therapy , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Factors/therapeutic use
8.
Sci Rep ; 10(1): 18474, 2020 10 28.
Article En | MEDLINE | ID: mdl-33116230

The recombination is one of the most frequently identified drivers of double-stranded DNA viruses evolution. However, the recombination events in African swine fever virus (ASFV) genomes have been poorly annotated. We hypothesize that the genetic determinants of ASFV variability are potential hot-spots for recombination. Here, we analyzed ASFV serotype-specific locus (C-type lectin (EP153R) and CD2v (EP402R)) in order to allocate the recombination breakpoints in these immunologically important proteins and reveal driving forces of virus evolution. The recombinations were found in both proteins, mostly among ASFV strains from East Africa, where multiple virus transmission cycles are notified. The recombination events were essentially associated with the domain organization of proteins. The phylogenetic analysis demonstrated the lack of clonal evolution for African strains which conclusively support the significance of recombinations in the serotype-specific locus. In addition, the signature of adaptive evolution of these two genes, pN/pS > 1, was demonstrated. These results have implications for the interpretation of cross-protection potential between evolutionary distant ASFV strains and strongly suggest that C-type lectin and CD2v may experience substantial selective pressure than previously thought.


African Swine Fever Virus/classification , African Swine Fever/virology , Evolution, Molecular , Recombination, Genetic , Viral Proteins/genetics , African Swine Fever Virus/genetics , Animals , Computational Biology , Epitopes/chemistry , Genotype , Lectins/chemistry , Lectins, C-Type/metabolism , Phylogeny , Population Dynamics , Serogroup , Swine
9.
Acta Vet Scand ; 61(1): 53, 2019 Nov 14.
Article En | MEDLINE | ID: mdl-31727129

BACKGROUND: General knowledge on climate change effects and adaptation strategies has increased significantly in recent years. However, there is still a substantial information gap regarding the influence of climate change on infectious diseases and how these diseases should be identified. From a One Health perspective, zoonotic infections are of particular concern. The climate in Northern regions is changing faster than the global average. This study sought to identify climate-sensitive infectious diseases (CSIs) of relevance for humans and/or animals living in Northern regions. Inclusion criteria for CSIs were constructed using expert assessments. Based on these principles, 37 potential CSIs relevant for Northern regions were identified. A systematic literature search was performed in three databases using an explicit stepwise approach to determine whether the literature supports selection of these 37 potential CSIs. RESULTS: In total, 1275 nominated abstracts were read and categorised using predefined criteria. Results showed that arthropod vector-borne diseases in particular are recognised as having potential to expand their distribution towards Northern latitudes and that tick-borne encephalitis and borreliosis, midge-borne bluetongue and the parasitic infection fasciolosis can be classified as climate-sensitive. Many of the other potential CSIs considered are affected by extreme weather events, but could not be clearly classified as climate-sensitive. An additional literature search comparing awareness of climate influences on potential CSIs between 1997-2006 and 2007-2016 showed an increase in the number of papers mentioning effects of climate change. CONCLUSIONS: The four CSIs identified in this study could be targeted in a systematic surveillance programme in Northern regions. It is evident that climate change can affect the epidemiology and geographical range of many infectious diseases, but there were difficulties in identifying additional CSIs, most likely because other factors may be of equal or greater importance. However, climate-ecological dynamics are constantly under change, and therefore diseases may fall in or out of the climate-sensitive definition over time. There is increasing awareness in the literature of the effects of climate change on infectious diseases over time.


Climate Change , Communicable Diseases/epidemiology , Zoonoses/epidemiology , Animals , Arctic Regions/epidemiology , Communicable Diseases/etiology , Communicable Diseases/veterinary , Europe/epidemiology , Geography , Greenland/epidemiology , Humans , Incidence , Prevalence , Russia/epidemiology , Zoonoses/etiology
10.
Virus Res ; 271: 197673, 2019 10 02.
Article En | MEDLINE | ID: mdl-31330205

African swine fever virus (ASFV) is the only known DNA arbovirus, and the ability to replicate efficiently in both insect and mammalian cells is encoded in its viral genome. Despite having a relatively low overall genomic mutation rate, ASFV demonstrates genetic diversity in certain genes and complexity in gene content in other genomic regions, indicating that ASFV may exploit multiple mechanisms for diversification and acquire new phenotype characteristics. ASFV antigenic diversity is reflected in the ability to type cross-protective viruses together into serogroups, largely based on antibody-mediated inhibition of hemadsorption. Here we review ASFV genetic signatures of ASFV type specificity, genome variability, and the hemadsorption as a means of defining virus antigenic type, and how these may be used toward defining antigenic and phenotypic diversity that is problematic for development of vaccine solutions to ASF.


African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , African Swine Fever/immunology , African Swine Fever/virology , Antigenic Variation , Genetic Variation , Host-Pathogen Interactions , African Swine Fever/metabolism , Animals , Cross Protection/genetics , Cross Protection/immunology , Genome, Viral , Genotype , Serogroup , Swine , Viral Proteins/genetics
11.
Arch Virol ; 164(4): 1199-1204, 2019 Apr.
Article En | MEDLINE | ID: mdl-30725181

Porcine epidemic diarrhea (PED) is a contagious viral disease in pigs, caused by the coronavirus porcine epidemic diarrhea virus (PEDV). PEDV infection results in significant mortality in piglets in unvaccinated herds. Like many others RNA viruses, PEDV has high evolutionary rate and is prone to genetic mutations. In this study, we analyzed the complete genome sequence of the recently sequenced isolate PEDV/Belgorod/dom/2008. A recombination event in S gene of PEDV/Belgorod/dom/2008 was detected. Pairwise identity analysis of the whole genome sequences revealed that PEDV/Belgorod/dom/2008 is an intermediate between PEDV and transmissible gastroenteritis virus (TGEV) strains. These results can be used for further analysis of the evolutionary variability, prevalence, and epidemiology of the porcine epidemic diarrhea virus.


Coronavirus Infections/veterinary , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Recombination, Genetic , Swine Diseases/virology , Animals , Coronavirus Infections/virology , Diarrhea/virology , Feces/virology , Phylogeny , Porcine epidemic diarrhea virus/classification , Porcine epidemic diarrhea virus/isolation & purification , Swine
12.
J Gen Virol ; 100(2): 259-265, 2019 02.
Article En | MEDLINE | ID: mdl-30628881

African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available, and progress is hindered by lack of knowledge concerning the extent of ASF virus (ASFV) strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Previously, we demonstrated that ASFV serotype-specific proteins CD2v (EP402R) and/or C-type lectin (EP153R) are important for protection against homologous ASF infection. Here, we identified six discrete T-cell epitope regions present on CD2v and C-type lectin using IFN-γ ELISpot assay and PBMCs from ASF immune animals, indicating cellular reactivity to these proteins in the context of ASFV infection and protective immunity. Notably, three of the epitope regions map to previously described serotype-specific signature regions of these proteins. Improved understanding of ASFV protective antigens, relevant epitopes and their diversity in nature will facilitate ASFV subunit vaccine design and development.


African Swine Fever Virus/immunology , Epitopes, T-Lymphocyte , Lectins, C-Type/immunology , Viral Proteins/immunology , Animals , Enzyme-Linked Immunospot Assay , Epitope Mapping , Interferon-gamma/metabolism , Swine
13.
J Virol Methods ; 257: 58-61, 2018 07.
Article En | MEDLINE | ID: mdl-29627336

Conventional methods, which quantitatively assess virus replication, are based on direct examination of viral cytopathic effect (CPE), which is time consuming, tedious and based on endpoint reading. The Real-Time Cell Analysis (RTCA) xCELLigence® system offers an alternative approach to evaluate virus-induced CPE, and here was evaluated as a means to dynamically assess CPE caused by African swine fever virus (ASFV). RTCA was used to identify optimum time for ASFV infection based on cell index (CI) and to evaluate ASFV CPE kinetics in COS-1 cells. Data indicated that the RTCA has tremendous potential to methodologically and quantitatively improve assays used to study efficiency of ASFV drug inhibitors and neutralizing antibodies.


African Swine Fever Virus/growth & development , Cytological Techniques/methods , Cytopathogenic Effect, Viral , Viral Load/methods , Virus Replication , Animals , COS Cells , Chlorocebus aethiops , Time Factors
14.
Emerg Infect Dis ; 24(4): 796-798, 2018 04.
Article En | MEDLINE | ID: mdl-29553323

African swine fever (ASF) is arguably the most dangerous and emerging swine disease worldwide. ASF is a serious problem for the swine industry. The first case of ASF in Russia was reported in 2007. We report an outbreak of ASF in Siberia, Russia, in 2017.


African Swine Fever Virus , African Swine Fever/epidemiology , African Swine Fever/virology , African Swine Fever/history , African Swine Fever Virus/classification , African Swine Fever Virus/genetics , Animals , DNA, Viral , Genome, Viral , Genotype , History, 21st Century , Siberia/epidemiology , Swine
15.
Genome Announc ; 5(41)2017 Oct 12.
Article En | MEDLINE | ID: mdl-29025931

We identified porcine epidemic diarrhea virus (PEDV) in stool samples from sick piglets in the Belgorod region of Russia. The complete coding genome sequence of 28,295 nucleotides (nt) of PEDV was generated. Compared to a prototype PEDV strain (DR13), an extreme number of mismatches in the S gene were revealed.

16.
J Gen Virol ; 98(7): 1658-1666, 2017 Jul.
Article En | MEDLINE | ID: mdl-28714849

Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.


Lagovirus/classification , RNA, Viral/genetics , Terminology as Topic , Animals , Caliciviridae Infections/virology , Genotype , Hares , Lagovirus/genetics , Lagovirus/pathogenicity , Phylogeny , Rabbits
17.
Arch Virol ; 162(10): 3081-3088, 2017 Oct.
Article En | MEDLINE | ID: mdl-28691128

African swine fever (ASF) is one of the most devastating diseases affecting the swine industry worldwide. No effective vaccine is currently available for disease prevention and control. Although live attenuated vaccines (LAV) have demonstrated great potential for immunizing against homologous strains of African swine fever virus (ASFV), adverse reactions from LAV remain a concern. Here, by using a homologous ASFV Congo strain system, we show passage-attenuated Congo LAV to induce an efficient protective immune response against challenge with the virulent parental Congo strain. Notably, only the parental challenge Congo strain was identified in blood and organs of recovered pigs through B602L gene PCR, long-range PCR, nucleotide sequencing and virus isolation. Thus, despite the great protective potential of homologous attenuated ASFV strain, the challenge Congo strain can persist for weeks in recovered pigs and a recrudescence of virulent virus at late time post-challenge may occur.


African Swine Fever Virus/pathogenicity , African Swine Fever/virology , African Swine Fever/prevention & control , African Swine Fever Virus/genetics , Amino Acid Sequence , Animals , Swine , Vaccines, Attenuated/immunology , Viral Load , Viral Proteins , Viral Vaccines/immunology , Virulence
18.
Arch Virol ; 161(7): 1973-9, 2016 Jul.
Article En | MEDLINE | ID: mdl-27094306

Since the first introduction of rabbit hemorrhagic disease (RHD) in 1986, disease outbreaks have been continuously reported in different regions of Russia. Despite extensive vaccination, sporadic RHD cases are still reported. Here, we examine eleven RHDV strains originating from disease outbreaks occurring between 2003 and 2012 and one widely used vaccine strain. Notable phenotypic and genetic heterogeneity among RHDV strains was observed. The RHDV strains Tambov-2010, Perm-2010, Manihino-09 showed different hemagglutinating activity (HA) at 4 °C and room temperature. While all RHDV field strains were identified as hemagglutinating virulent viruses of the RHDVa variant, the vaccine strain was assigned as a "classical" RHDV. These data indicate that since 2003, RHDVa has become the predominant variant circulating in Russia.


Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/isolation & purification , Rabbits/virology , Animals , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Disease Outbreaks , Hemorrhagic Disease Virus, Rabbit/classification , Hemorrhagic Disease Virus, Rabbit/genetics , Phylogeny , Russia/epidemiology , Viral Proteins/genetics
19.
J Virol Methods ; 224: 53-7, 2015 Nov.
Article En | MEDLINE | ID: mdl-26300371

Discrimination between different field and vaccine strains of classical swine fever virus (CSFV) is crucial for meaningful disease diagnosis and epidemiological investigation. In this study, a rapid method for differentiating vaccine strains and outbreak CSFV isolates by combined RT-PCR and high-resolution melt (HRM) analysis has been developed. The assay is based on PCR amplification of short fragments from the most variable region of CSFVgene E2, followed by HRM analysis of amplicons. Real-Time PCR/HRM for CSFV detection and differentiation analysis has sensitivity comparable to RT-qPCR and genotyping resolution comparable to E2 nucleotide sequencing. This assay in one step enables rapid and sensitive identification and genotype discrimination of CSFV in field samples, and thus will be valuable for CSF outbreak response and disease control.


Classical Swine Fever Virus/classification , Classical Swine Fever Virus/genetics , Genotype , Genotyping Techniques/methods , Animals , Classical Swine Fever/diagnosis , Classical Swine Fever/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Swine , Transition Temperature
20.
Vaccine ; 33(19): 2273-2282, 2015 May 05.
Article En | MEDLINE | ID: mdl-25825333

Novel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN(-)" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pol gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN(-) DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/ß2 mice showed a substantial increase of IFN-γ-ELISPOT in splenocytes compared to the former replication and integration defective Δ4SHIV-KU2 DNA vaccine.


AIDS Vaccines/immunology , HIV-1/immunology , HIV-1/physiology , Vaccines, DNA/immunology , Virus Replication , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , AIDS Vaccines/isolation & purification , Animals , Enzyme-Linked Immunospot Assay , Gene Deletion , HIV Integrase/genetics , HIV-1/genetics , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Mice, Inbred BALB C , Mice, SCID , Spleen/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/isolation & purification , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/isolation & purification
...