Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(1): e15902, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163670

RESUMEN

Although zinc deficiency (secondary to malnutrition) has long been considered an important contributor to morbidity and mortality of infectious disease (e.g. diarrhea disorders), epidemiologic data (including randomized controlled trials with supplemental zinc) for such a role in lower respiratory tract infection are somewhat ambiguous. In the current study, we provide the first preclinical evidence demonstrating that although diet-induced acute zinc deficiency (Zn-D: ~50% decrease) did not worsen infection induced by either influenza A (H1N1) or methicillin-resistant staph aureus (MRSA), Zn-D mice were sensitive to the injurious effects of superinfection of H1N1 with MRSA. Although the mechanism underlying the sensitivity of ZnD mice to combined H1N1/MRSA infection is unclear, it was noteworthy that this combination exacerbated lung injury as shown by lung epithelial injury markers (increased BAL protein) and decreased genes related to epithelial integrity in Zn-D mice (surfactant protein C and secretoglobins family 1A member 1). As bacterial pneumonia accounts for 25%-50% of morbidity and mortality from influenza A infection, zinc deficiency may be an important pathology component of respiratory tract infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Desnutrición , Staphylococcus aureus Resistente a Meticilina , Neumonía Bacteriana , Animales , Ratones , Neumonía Bacteriana/complicaciones , Staphylococcus aureus , Zinc
2.
Anal Biochem ; 654: 114840, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931182

RESUMEN

We compared the accuracy of three common methods of total protein normalization. The Stain-Free method was accurate across different types/brands of western blotting membrane and for various protein loads, unlike Ponceau S and Amido Black. Normalizing to the housekeeping proteins Actin and ß-Tubulin could match the accuracy of the Stain-Free method. However, compared to Actin or ß-Tubulin, normalizing to the Stain-Free signal reduced variability that led to enhanced reproducibility and a reduction in the number of samples needed to obtain statistically significant results by >50%. Stain-Free normalization can enhance the reproducibility and hence the confidence in Western Blot data.


Asunto(s)
Actinas , Colorantes , Western Blotting , Reproducibilidad de los Resultados , Tubulina (Proteína)
3.
PLoS One ; 15(11): e0241122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33151963

RESUMEN

Sepsis is the leading cause of death in hospitalized patients and beyond the hospital stay and these long-term sequelae are due in part to unresolved inflammation. Metabolic shift from oxidative phosphorylation to aerobic glycolysis links metabolism to inflammation and such a shift is commonly observed in sepsis under normoxic conditions. By shifting the metabolic state from aerobic glycolysis to oxidative phosphorylation, we hypothesized it would reverse unresolved inflammation and subsequently improve outcome. We propose a shift from aerobic glycolysis to oxidative phosphorylation as a sepsis therapy by targeting the pathways involved in the conversion of pyruvate into acetyl-CoA via pyruvate dehydrogenase (PDH). Chemical manipulation of PDH using dichloroacetic acid (DCA) will promote oxidative phosphorylation over glycolysis and decrease inflammation. We tested our hypothesis in a Drosophila melanogaster model of surviving sepsis infected with Staphylococcus aureus. Drosophila were divided into 3 groups: unmanipulated, sham and sepsis survivors, all treated with linezolid; each group was either treated or not with DCA for one week following sepsis. We followed lifespan, measured gene expression of Toll, defensin, cecropin A, and drosomycin, and levels of lactate, pyruvate, acetyl-CoA as well as TCA metabolites. In our model, metabolic effects of sepsis are modified by DCA with normalized lactate, TCA metabolites, and was associated with improved lifespan of sepsis survivors, yet had no lifespan effects on unmanipulated and sham flies. While Drosomycin and cecropin A expression increased in sepsis survivors, DCA treatment decreased both and selectively increased defensin.


Asunto(s)
Ácido Dicloroacético/farmacología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Longevidad/efectos de los fármacos , Sepsis/tratamiento farmacológico , Acetilcoenzima A/metabolismo , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Glucólisis/efectos de los fármacos , Inflamación/metabolismo , Ácido Láctico/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Sepsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA