Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 402: 111190, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121899

RESUMEN

The isothiourea derivative NT-1505 is known as a neuroprotector and cognition enhancer in animal models of neurodegenerative diseases. Bearing in mind possible relation of the NT-1505-mediated neuroprotection to mitochondrial uncoupling activity, here, we examine NT-1505 effects on mitochondria functioning. At concentrations starting from 10 µM, NT-1505 prevented Ca2+-induced mitochondrial swelling, similar to common uncouplers. Alongside the inhibition of the mitochondrial permeability transition, NT-1505 caused a decrease in mitochondrial membrane potential and an increase in respiration rate in both isolated mammalian mitochondria and cell cultures, which resulted in the reduction of energy-dependent Ca2+ uptake by mitochondria. Based on the oppositely directed effects of bovine serum albumin and palmitate, we suggest the involvement of fatty acids in the NT-1505-mediated mitochondrial uncoupling. In addition, we measured the induction of electrical current across planar bilayer lipid membrane upon the addition of NT-1505 to the bathing solution. Importantly, introduction of the palmitic acid into the lipid bilayer composition led to weak proton selectivity of the NT-1505-mediated BLM current. Thus, the present study revealed an ability of NT-1505 to cause moderate protonophoric uncoupling of mitochondria, which could contribute to the neuroprotective effect of this compound.

2.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833898

RESUMEN

This review is devoted to the problems of the common features linking metabolic disorders and type 2 diabetes with the development of Alzheimer's disease. The pathogenesis of Alzheimer's disease closely intersects with the mechanisms of type 2 diabetes development, and an important risk factor for both pathologies is aging. Common pathological mechanisms include both factors in the development of oxidative stress, neuroinflammation, insulin resistance, and amyloidosis, as well as impaired mitochondrial dysfunctions and increasing cell death. The currently available drugs for the treatment of type 2 diabetes and Alzheimer's disease have limited therapeutic efficacy. It is important to note that drugs used to treat Alzheimer's disease, in particular acetylcholinesterase inhibitors, show a positive therapeutic potential in the treatment of type 2 diabetes, while drugs used in the treatment of type 2 diabetes can also prevent a number of pathologies characteristic for Alzheimer's disease. A promising direction in the search for a strategy for the treatment of type 2 diabetes and Alzheimer's disease may be the creation of complex multi-target drugs that have neuroprotective potential and affect specific common targets for type 2 diabetes and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Acetilcolinesterasa/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo
3.
Sci Rep ; 12(1): 12766, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896565

RESUMEN

All forms of dementia including Alzheimer's disease are currently incurable. Mitochondrial dysfunction and calcium alterations are shown to be involved in the mechanism of neurodegeneration in Alzheimer's disease. Previously we have described the ability of compound Tg-2112x to protect neurons via sequestration of mitochondrial calcium uptake and we suggest that it can also be protective against neurodegeneration and development of dementia. Using primary co-culture neurons and astrocytes we studied the effect of Tg-2112x and its derivative Tg-2113x on ß-amyloid-induced changes in calcium signal, mitochondrial membrane potential, mitochondrial calcium, and cell death. We have found that both compounds had no effect on ß-amyloid or acetylcholine-induced calcium changes in the cytosol although Tg2113x, but not Tg2112x reduced glutamate-induced calcium signal. Both compounds were able to reduce mitochondrial calcium uptake and protected cells against ß-amyloid-induced mitochondrial depolarization and cell death. Behavioral effects of Tg-2113x on learning and memory in fear conditioning were also studied in 3 mouse models of neurodegeneration: aged (16-month-old) C57Bl/6j mice, scopolamine-induced amnesia (3-month-old mice), and 9-month-old 5xFAD mice. It was found that Tg-2113x prevented age-, scopolamine- and cerebral amyloidosis-induced decrease in fear conditioning. In addition, Tg-2113x restored fear extinction of aged mice. Thus, reduction of the mitochondrial calcium uptake protects neurons and astrocytes against ß-amyloid-induced cell death and contributes to protection against dementia of different ethology. These compounds could be used as background for the developing of a novel generation of disease-modifying neuroprotective agents.


Asunto(s)
Enfermedad de Alzheimer , Síndromes de Neurotoxicidad , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Extinción Psicológica , Miedo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Derivados de Escopolamina
4.
Med Res Rev ; 41(2): 803-827, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32687230

RESUMEN

The mitochondria-targeting drugs can be conventionally divided into the following groups: those compensating for the energy deficit involved in neurodegeneration, including stimulants of mitochondrial bioenergetics and activators of mitochondrial biogenesis; and neuroprotectors, that are compounds increasing the resistance of mitochondria to opening of mitochondrial permeability transition (MPT) pores. Although compensating for the energy deficit and inhibition of MPT are obvious targets for drugs used in the very early stages of Alzheimer-like pathology, but their use as the monotherapy for patients with severe symptoms is unlikely to be sufficiently effective. It would be optimal to combine targets that would provide the cognitive-stimulating, the neuroprotective effects and the ability to affect specific disease-forming mechanisms. In the design of such drugs, assessment of their potential mitochondrial-targeted effects is of particular importance. The possibility of targeted drug design for simultaneous action on mitochondrial and neurotransmitter's receptors targets is, in particularly, based on the known interplay of various cellular pathways and the presence of common structural components. Of particular interest is directed search for multitarget drugs that would act simultaneously on mitochondrial calcium-dependent functions, the targets (receptors, enzymes, etc.) facilitating neurotransmission, and the molecular targets related to the action of so-called disease-modifying factors, in particular, the formation and overcoming of the toxicity of ß-amyloid or hyperphosphorylated tau protein. The examples of such approaches realized on the level of preclinical and clinical trials are presented below.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Humanos , Mitocondrias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
5.
Life Sci Space Res (Amst) ; 20: 12-19, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30797429

RESUMEN

BACKGROUND: Ionizing radiation and hypogravity can cause central nervous system (CNS) dysfunctions. This is a key limiting factor for deep space missions. Up until now, the mechanisms through which they affect the neural tissue are not completely understood. OBJECTIVES: We studied how the combination of hypogravity (antiorthostatic suspension model, AS) and ionizing radiations (γ-quanta and 1H+ together, R) affects the CNS. METHODS: We applied separately and in combination AS and R to determine the influence of these factors on behavior and metabolism of monoamines in Wistar rat's brain. RESULTS: We found out that R has a slight effect on both the behavior and metabolism of monoamines. However, when applied in combination with AS the former was able to reduce the negative effects of the latter. The combined effect of ionizing radiation and hypogravity led to the recovery of locomotor activity, orientation and exploratory behavior, and long-term context memory impaired under the impact of hypogravity only. These changes came together with an increase in the serotonin and dopamine turnover in all of the brain structures that were studied. CONCLUSIONS: We received the first evidence of interferential interaction between the effects of ionizing radiation and hypogravity factors with regard to a behavior and monoamine turnover in the brain. Further studies with heavy nuclei at relevant doses (<0.5 Gy) are needed.


Asunto(s)
Conducta Animal/efectos de la radiación , Monoaminas Biogénicas/metabolismo , Encéfalo/metabolismo , Hipogravedad , Modelos Biológicos , Radiación Ionizante , Animales , Encéfalo/efectos de la radiación , Masculino , Ratas , Ratas Wistar
6.
Neurogenetics ; 19(3): 189-204, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29982879

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the eventual death of motor neurons. Described cases of familial ALS have emphasized the significance of protein misfolding and aggregation of two functionally related proteins, FUS (fused in sarcoma) and TDP-43, implicated in RNA metabolism. Herein, we performed a comprehensive analysis of the in vivo model of FUS-mediated proteinopathy (ΔFUS(1-359) mice). First, we used the Noldus CatWalk system and confocal microscopy to determine the time of onset of the first clinical symptoms and the appearance of FUS-positive inclusions in the cytoplasm of neuronal cells. Second, we applied RNA-seq to evaluate changes in the gene expression profile encompassing the pre-symptomatic and the symptomatic stages of disease progression in motor neurons and the surrounding microglia of the spinal cord. The resulting data show that FUS-mediated proteinopathy is virtually asymptomatic in terms of both the clinical symptoms and the molecular aspects of neurodegeneration until it reaches the terminal stage of disease progression (120 days from birth). After this time, the pathological process develops very rapidly, resulting in the formation of massive FUS-positive inclusions accompanied by a transcriptional "burst" in the spinal cord cells. Specifically, it manifests in activation of a pro-inflammatory phenotype of microglial cells and malfunction of acetylcholine synapse transmission in motor neurons. Overall, we assume that the highly reproducible course of the pathological process, as well as the described accompanying features, makes ΔFUS(1-359) mice a convenient model for testing potential therapeutics against proteinopathy-induced decay of motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteína FUS de Unión a ARN/genética , Animales , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratones , Neuronas Motoras/fisiología , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Transducción de Señal/genética , Médula Espinal/metabolismo , Médula Espinal/patología
7.
Neurobiol Aging ; 36(10): 2908.e5-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254955

RESUMEN

Cohorts of amyotrophic lateral sclerosis (ALS) patients and control individuals of Caucasian origin from the Central European Russia (Moscow city and region) were analyzed for the presence of hexanucleotide repeat GGGGCC expansion within the first intron of the C9ORF72 gene. The presence of a large (>40) repeat expansion was found in 15% of familial ALS cases (3 of 20 unrelated familial cases) and 2.5% of sporadic ALS cases (6 of 238) but in none of control cases. These results suggest that the frequency of C9ORF72 hexanucleotide repeats expansions in the Central European Russian ALS patients is significantly lower than in Western European or Northern American ALS patients of Caucasian origin but higher than in Asian ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Proteínas/genética , Proteína C9orf72 , Estudios de Cohortes , Europa (Continente) , Humanos , Intrones/genética , Federación de Rusia , Expansión de Repetición de Trinucleótido , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA