Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Cell Mol Med ; 26(5): 1445-1455, 2022 03.
Article En | MEDLINE | ID: mdl-35064759

There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.


COVID-19/genetics , COVID-19/mortality , Neural Networks, Computer , COVID-19/epidemiology , Complement Activation/genetics , Complement Factor H/genetics , Complement System Proteins/genetics , Female , Greece/epidemiology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Models, Genetic , Morbidity , Polymorphism, Single Nucleotide , Thrombomodulin/genetics
2.
Materials (Basel) ; 14(21)2021 Oct 29.
Article En | MEDLINE | ID: mdl-34772040

The California Bearing Ratio (CBR) is an important index for evaluating the bearing capacity of pavement subgrade materials. In this research, random subspace optimization-based hybrid computing models were trained and developed for the prediction of the CBR of soil. Three models were developed, namely reduced error pruning trees (REPTs), random subsurface-based REPT (RSS-REPT), and RSS-based extra tree (RSS-ET). An experimental database was compiled from a total of 214 soil samples, which were classified according to AASHTO M 145, and included 26 samples of A-2-6 (clayey gravel and sand soil), 3 samples of A-4 (silty soil), 89 samples of A-6 (clayey soil), and 96 samples of A-7-6 (clayey soil). All CBR tests were performed in soaked conditions. The input parameters of the models included the particle size distribution, gravel content (G), coarse sand content (CS), fine sand content (FS), silt clay content (SC), organic content (O), liquid limit (LL), plastic limit (PL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). The accuracy of the developed models was assessed using numerous performance indexes, such as the coefficient of determination, relative error, MAE, and RMSE. The results show that the highest prediction accuracy was obtained using the RSS-based extra tree optimization technique.

...