Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2083, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136127

RESUMEN

Three probabilistic methodologies are developed for predicting the long-term creep rupture life of 9-12 wt%Cr ferritic-martensitic steels using their chemical and processing parameters. The framework developed in this research strives to simultaneously make efficient inference along with associated risk, i.e., the uncertainty of estimation. The study highlights the limitations of applying probabilistic machine learning to model creep life and provides suggestions as to how this might be alleviated to make an efficient and accurate model with the evaluation of epistemic uncertainty of each prediction. Based on extensive experimentation, Gaussian Process Regression yielded more accurate inference ([Formula: see text] for the holdout test set) in addition to meaningful uncertainty estimate (i.e., coverage ranges from 94 to 98% for the test set) as compared to quantile regression and natural gradient boosting algorithm. Furthermore, the possibility of an active learning framework to iteratively explore the material space intelligently was demonstrated by simulating the experimental data collection process. This framework can be subsequently deployed to improve model performance or to explore new alloy domains with minimal experimental effort.

2.
Sci Rep ; 11(1): 5466, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750812

RESUMEN

The class of 9-12% Cr ferritic-martensitic alloys (FMA) and austenitic stainless steels have received considerable attention due to their numerous applications in high temperature power generation industries. To design high strength steels with prolonged service life requires a thorough understanding of the long-term properties, e.g., creep rupture strength, rupture life, etc., as a function of the chemical composition and processing parameters that govern the microstructural characteristics. In this article, the creep rupture strength of both 9-12% Cr FMA and austenitic stainless steel has been parameterized using curated experimental datasets with a gradient boosting machine. The trained model has been cross validated against unseen test data and achieved high predictive performance in terms of correlation coefficient ([Formula: see text] for 9-12% Cr FMA and [Formula: see text] for austenitic stainless steel) thus bypassing the need for additional comprehensive tensile test campaigns or physical theoretical calculations. Furthermore, the feature importance has been computed using the Shapley value analysis to understand the complex interplay of different features.

3.
Sci Data ; 6(1): 76, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138814

RESUMEN

A comprehensive database of chemical properties on a vast set of transition metal surfaces has the potential to accelerate the discovery of novel catalytic materials for energy and industrial applications. In this data descriptor, we present such an extensive study of chemisorption properties of important adsorbates - e.g., C, O, N, H, S, CHx, OH, NH, and SH - on 2,035 bimetallic alloy surfaces in 5 different stoichiometric ratios, i.e., 0%, 25%, 50%, 75%, and 100%. To our knowledge, it is the first systematic study to compile the adsorption properties of such a well-defined, large chemical space of catalytic interest. We propose that a collection of catalytic properties of this magnitude can assist with the development of machine learning enabled surrogate models in theoretical catalysis research to design robust catalysts with high activity for challenging chemical transformations. This database is made publicly available through the platform www.Catalysis-hub.org for easy retrieval of the data for further scientific analysis.

4.
Sci Data ; 6(1): 75, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138816

RESUMEN

We present a new open repository for chemical reactions on catalytic surfaces, available at https://www.catalysis-hub.org . The featured database for surface reactions contains more than 100,000 chemisorption and reaction energies obtained from electronic structure calculations, and is continuously being updated with new datasets. In addition to providing quantum-mechanical results for a broad range of reactions and surfaces from different publications, the database features a systematic, large-scale study of chemical adsorption and hydrogenation on bimetallic alloy surfaces. The database contains reaction specific information, such as the surface composition and reaction energy for each reaction, as well as the surface geometries and calculational parameters, essential for data reproducibility. By providing direct access via the web-interface as well as a Python API, we seek to accelerate the discovery of catalytic materials for sustainable energy applications by enabling researchers to efficiently use the data as a basis for new calculations and model generation.

5.
J Phys Chem A ; 123(11): 2281-2285, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30802053

RESUMEN

We present a methodology for graph based enumeration of surfaces and unique chemical adsorption structures bonded to those surfaces. Utilizing the graph produced from a bulk structure, we create a unique graph representation for any general slab cleave and further extend that representation to include a large variety of catalytically relevant adsorbed molecules. We also demonstrate simple geometric procedures to generate 3D initial guesses of these enumerated structures. While generally useful for generating a wide variety of structures used in computational surface science and heterogeneous catalysis, these techniques are also key to facilitating an informatics approach to the high-throughput search for more effective catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...