Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5444, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673952

RESUMEN

Preventing tau aggregation is a potential therapeutic strategy in Alzheimer's disease and other tauopathies. Recently, liquid-liquid phase separation has been found to facilitate the formation of pathogenic tau conformations and fibrillar aggregates, although many aspects of the conformational transitions of tau during the phase transition process remain unknown. Here, we demonstrate that the tau aggregation inhibitor methylene blue promotes tau liquid-liquid phase separation and accelerates the liquid-to-gel transition of tau droplets independent of the redox activity of methylene blue. We further show that methylene blue inhibits the conversion of tau droplets into fibrils and reduces the cytotoxicity of tau aggregates. Although gelation slows down the mobility of tau and tubulin, it does not impair microtubule assembly within tau droplets. These findings suggest that methylene blue inhibits tau amyloid fibrillization and accelerates tau droplet gelation via distinct mechanisms, thus providing insights into the activity of tau aggregation inhibitors in the context of phase transition.


Asunto(s)
Enfermedad de Alzheimer , Azul de Metileno , Humanos , Azul de Metileno/farmacología , Proteínas Amiloidogénicas , Citoesqueleto , Transición de Fase
2.
Curr Opin Struct Biol ; 72: 187-193, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942567

RESUMEN

Recent advances in computational hardware and free energy algorithms enable a broader application of molecular simulation of binding interactions between receptors and small-molecule ligands. The underlying molecular mechanics force fields (FFs) for small molecules have also achieved advancements in accuracy, user-friendliness, and speed during the past several years (2018-2020). Besides the expansion of chemical space coverage of ligand-like molecules among major popular classical additive FFs and polarizable FFs, new charge models have been proposed for better accuracy and transferability, new chemical perception of avoiding predefined atom types have been applied, and new automated parameterization toolkits, including machine learning approaches, have been developed for users' convenience.


Asunto(s)
Algoritmos , Simulación de Dinámica Molecular , Ligandos , Termodinámica
3.
J Chem Phys ; 153(11): 114502, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32962378

RESUMEN

The General AMBER Force Field (GAFF) has been broadly used by researchers all over the world to perform in silico simulations and modelings on diverse scientific topics, especially in the field of computer-aided drug design whose primary task is to accurately predict the affinity and selectivity of receptor-ligand binding. The atomic partial charges in GAFF and the second generation of GAFF (GAFF2) were originally developed with the quantum mechanics derived restrained electrostatic potential charge, but in practice, users usually adopt an efficient charge method, Austin Model 1-bond charge corrections (AM1-BCC), based on which, without expensive ab initio calculations, the atomic charges could be efficiently and conveniently obtained with the ANTECHAMBER module implemented in the AMBER software package. In this work, we developed a new set of BCC parameters specifically for GAFF2 using 442 neutral organic solutes covering diverse functional groups in aqueous solution. Compared to the original BCC parameter set, the new parameter set significantly reduced the mean unsigned error (MUE) of hydration free energies from 1.03 kcal/mol to 0.37 kcal/mol. More excitingly, this new AM1-BCC model also showed excellent performance in the solvation free energy (SFE) calculation on diverse solutes in various organic solvents across a range of different dielectric constants. In this large-scale test with totally 895 neutral organic solvent-solute systems, the new parameter set led to accurate SFE predictions with the MUE and the root-mean-square-error of 0.51 kcal/mol and 0.65 kcal/mol, respectively. This newly developed charge model, ABCG2, paved a promising path for the next generation GAFF development.

4.
ACS Omega ; 5(9): 4611-4619, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32175507

RESUMEN

Accurate prediction of the absolute or relative protein-ligand binding affinity is one of the major tasks in computer-aided drug design projects, especially in the stage of lead optimization. In principle, the alchemical free energy (AFE) methods such as thermodynamic integration (TI) or free-energy perturbation (FEP) can fulfill this task, but in practice, a lot of hurdles prevent them from being routinely applied in daily drug design projects, such as the demanding computing resources, slow computing processes, unavailable or inaccurate force field parameters, and difficult and unfriendly setting up and post-analysis procedures. In this study, we have exploited practical protocols of applying the CPU (central processing unit)-TI and newly developed GPU (graphic processing unit)-TI modules and other tools in the AMBER software package, combined with ff14SB/GAFF1.8 force fields, to conduct efficient and accurate AFE calculations on protein-ligand binding free energies. We have tested 134 protein-ligand complexes in total for four target proteins (BACE, CDK2, MCL1, and PTP1B) and obtained overall comparable performance with the commercial Schrodinger FEP+ program (WangJ. Am. Chem. Soc.2015, 137, 2695-2703). The achieved accuracy fits within the requirements for computations to generate effective guidance for experimental work in drug lead optimization, and the needed wall time is short enough for practical application. Our verified protocol provides a practical solution for routine AFE calculations in real drug design projects.

5.
J Comput Aided Mol Des ; 33(1): 105-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30218199

RESUMEN

We participated in the Cathepsin S (CatS) sub-challenge of the Drug Design Data Resource (D3R) Grand Challenge 3 (GC3) in 2017 to blindly predict the binding poses of 24 CatS-bound ligands, the binding affinity ranking of 136 ligands, and the binding free energies of a subset of 33 ligands in Stage 1A and Stage 2. Our submitted predictions ranked relatively well compared to the submissions from other participants. Here we present our methodologies used in the challenge. For the binding pose prediction, we employed the Glide module in the Schrodinger Suite 2017 and AutoDock Vina. For the binding affinity/free energy prediction, we carried out molecular dynamics simulations of the complexes in explicit water solvent with counter ions, and then estimated the binding free energies with our newly developed model of extended linear interaction energy (ELIE), which is inspired by two other popular end-point approaches: the linear interaction energy (LIE) method, and the molecular mechanics with Poisson-Boltzmann surface area solvation method (MM/PBSA). Our studies suggest that ELIE is a good trade-off between efficiency and accuracy, and it is appropriate for filling the gap between the high-throughput docking and scoring methods and the rigorous but much more computationally demanding methods like free energy perturbation (FEP) or thermodynamics integration (TI) in computer-aided drug design (CADD) projects.


Asunto(s)
Catepsinas/química , Simulación del Acoplamiento Molecular/métodos , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Diseño Asistido por Computadora , Cristalografía por Rayos X , Bases de Datos de Proteínas , Diseño de Fármacos , Ligandos , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Solventes/química , Relación Estructura-Actividad , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA