Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Pharm Biomed Anal ; 219: 114900, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-35752026

Antibiotic (ATB) prescription in an intensive care unit (ICU) requires continuous monitoring of serum dosages due to the patient's pathophysiological condition. Dosing adjustment is necessary to achieve effective targeted concentrations. Since ICUs routinely use a large number of ATBs, global monitoring needs to be developed. In the present study, we developed a global analytical method for extracting, separating and quantifying the most widely used ATBs in ICUs: amoxicillin, piperacillin, cefazolin, cefepime, cefotaxime, ceftazidime, ceftolozane, ceftriaxone, ertapenem, meropenem, ciprofloxacin, moxifloxacin, levofloxacin, daptomycin, dalbavancin, linezolid and a beta-lactamase inhibitor: tazobactam. To guarantee the robustness of the quantification, we differentiated the 16 ATBs and the beta lactamase inhibitor into 4 pools (ATB1 to ATB4), taking into account prescription frequency in the ICU, the physicochemical properties and the calibration ranges of the ATBs selected. The whole ATB was then separated with two LC columns in reversed phase: Kinetex Polar-C18 100 Å and Polar-RP-80 synergy, in less than 6.5 min. Detection was carried out by electrospray in positive ion mode, by tandem mass spectrometry (LC-MS/MS. The four quantification methods were validated according to the European guidelines on bioanalytical method validation (EMEA guide), after determining the extraction yields, matrix effects, recovery, precision, accuracy, within-run precision and between-run precision. For all analyses, bias is < 15% and is comparable to the literature and LOQs vary from 0.05 mg.L-1 for ciprofloxacin to 1.00 mg.L-1 for ceftriaxone and dalbavancin. The stability time of cefepime and piperacillin is 3 hrs and for the other ATBs 6 hrs in serum at room temperature. For long-term stability, freezing at - 80 °C guarantees 3 months of stability for ceftriaxone and dalbavancin and more than 6 months for the other ATBs.


Anti-Bacterial Agents , Tandem Mass Spectrometry , Cefepime , Ceftriaxone , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Ciprofloxacin , Humans , Piperacillin , Reproducibility of Results , Tandem Mass Spectrometry/methods , beta-Lactamase Inhibitors
2.
Pharmaceutics ; 14(2)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35214174

Model-informed precision dosing is being increasingly used to improve therapeutic drug monitoring. To meet this need, several tools have been developed, but open-source software remains uncommon. Posologyr is a free and open-source R package developed to enable Bayesian individual parameter estimation and dose individualization. Before using it for clinical practice, performance validation is mandatory. The estimation functions implemented in posologyr were benchmarked against reference software products on a wide variety of models and pharmacokinetic profiles: 35 population pharmacokinetic models, with 4.000 simulated subjects by model. Maximum A Posteriori (MAP) estimates were compared to NONMEM post hoc estimates, and full posterior distributions were compared to Monolix conditional distribution estimates. The performance of MAP estimation was excellent in 98.7% of the cases. Considering the full posterior distributions of individual parameters, the bias on dosage adjustment proposals was acceptable in 97% of cases with a median bias of 0.65%. These results confirmed the ability of posologyr to serve as a basis for the development of future Bayesian dose individualization tools.

3.
J Transl Med ; 18(1): 213, 2020 05 27.
Article En | MEDLINE | ID: mdl-32460856

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is increasingly used in intensive care units and can modify drug pharmacokinetics and lead to under-exposure associated with treatment failure. Ceftolozane/tazobactam is an antibiotic combination used for complicated infections in critically ill patients. Launched in 2015, sparse data are available on the influence of ECMO on the pharmacokinetics of ceftolozane/tazobactam. The aim of the present study was to determine the influence of ECMO on the pharmacokinetics of ceftolozane-tazobactam. METHODS: An ex vivo model (closed-loop ECMO circuits primed with human whole blood) was used to study adsorption during 8-h inter-dose intervals over a 24-h period (for all three ceftolozane/tazobactam injections) with eight samples per inter-dose interval. Two different dosages of ceftolozane/tazobactam injection were studied and a control (whole blood spiked with ceftolozane/tazobactam in a glass tube) was performed. An in vivo porcine model was developed with a 1-h infusion of ceftolozane-tazobactam and concentration monitoring for 11 h. Pigs undergoing ECMO were compared with a control group. Pharmacokinetic analysis of in vivo data (non-compartmental analysis and non-linear mixed effects modelling) was performed to determine the influence of ECMO. RESULTS: With the ex vivo model, variations in concentration ranged from - 5.73 to 1.26% and from - 12.95 to - 2.89% respectively for ceftolozane (concentrations ranging from 20 to 180 mg/l) and tazobactam (concentrations ranging from 10 to 75 mg/l) after 8 h. In vivo pharmacokinetic exploration showed that ECMO induces a significant decrease of 37% for tazobactam clearance without significant modification in the pharmacokinetics of ceftolozane, probably due to a small cohort size. CONCLUSIONS: Considering that the influence of ECMO on the pharmacokinetics of ceftolozane/tazobactam is not clinically significant, normal ceftolozane and tazobactam dosing in critically ill patients should be effective for patients undergoing ECMO.


Extracorporeal Membrane Oxygenation , Animals , Anti-Bacterial Agents/therapeutic use , Cephalosporins , Critical Illness , Humans , Swine , Tazobactam/pharmacology
...