Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(12): 102705, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400200

RESUMEN

The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.


Asunto(s)
Proteínas Hedgehog , Humanos , Colesterol/metabolismo , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/metabolismo , Ligandos , Proteínas Oncogénicas , Esteroles
2.
Bioconjug Chem ; 30(11): 2799-2804, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31600061

RESUMEN

Hedgehog (Hh) precursor proteins contain an autoprocessing domain called HhC whose native function is protein cleavage and C-terminal glycine sterylation. The transformation catalyzed by HhC occurs in cis from a precursor protein and exhibits wide tolerance toward both sterol and protein substrates. Here, we repurpose HhC as a 1:1 protein-nucleic acid ligase, with the sterol serving as a molecular linker. A procedure is described for preparing HhC-active sterylated DNA, called steramers, using aqueous compatible chemistry and commercial reagents. Steramers have KM values of 7-11 µM and reaction t1/2 values of ∼10 min. Modularity of the HhC/steramer method is demonstrated using four different proteins along with structured and unstructured sterylated nucleic acids. The resulting protein-DNA conjugates retain the native solution properties and biochemical function. Unlike self-tagging domains, HhC does not remain fused to the conjugate; rather, enzymatic activity is mechanistically coupled to conjugate release. That unique feature of HhC, coupled with efficient kinetics and substrate tolerance, may ease access and open new applications for these suprabiological chimeras.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Esteroles/química , Esteroles/metabolismo , Animales , Drosophila , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA