Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3963-3973, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305745

RESUMEN

One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.

2.
Inorg Chem ; 62(40): 16523-16537, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37755334

RESUMEN

Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.

3.
J Chem Inf Model ; 63(3): 882-897, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36661314

RESUMEN

Herein, an Energy Decomposition Analysis (EDA) scheme extended to the framework of QM/MM calculations in the context of electrostatic embeddings (QM/MM-EDA) including atomic charges and dipoles is applied to assess the effect of the QM region size on the convergence of the different interaction energy components, namely, electrostatic, Pauli, and polarization, for cationic, anionic, and neutral systems interacting with a strong polar environment (water). Significant improvements are found when the bulk solvent environment is described by a MM potential in the EDA scheme as compared to pure QM calculations that neglect bulk solvation. The predominant electrostatic interaction requires sizable QM regions. The results reported here show that it is necessary to include a surprisingly large number of water molecules in the QM region to obtain converged values for this energy term, contrary to most cluster models often employed in the literature. Both the improvement of the QM wave function by means of a larger basis set and the introduction of polarization into the MM region through a polarizable force field do not translate to a faster convergence with the QM region size, but they lead to better results for the different interaction energy components. The results obtained in this work provide insight into the effect of each energy component on the convergence of the solute-solvent interaction energy with the QM region size. This information can be used to improve the MM FFs and embedding schemes employed in QM/MM calculations of solvated systems.


Asunto(s)
Teoría Cuántica , Agua , Solventes , Soluciones , Electricidad Estática
4.
J Comput Chem ; 44(4): 516-533, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36507763

RESUMEN

We present a toolkit that allows for the preparation of QM/MM input files from a conformational ensemble of molecular geometries. The package is currently compatible with trajectory and topology files in Amber, CHARMM, GROMACS and NAMD formats, and has the possibility to generate QM/MM input files for Gaussian (09 and 16), Orca (≥4.0), NWChem and (Open)Molcas. The toolkit can be used in command line, so that no programming experience is required, although it presents some features that can also be employed as a python application programming interface. We apply the toolkit in four situations in which different electronic-structure properties of organic molecules in the presence of a solvent or a complex biological environment are computed: the reduction potential of the nucleobases in acetonitrile, an energy decomposition analysis of tyrosine interacting with water, the absorption spectrum of an azobenzene derivative integrated into a voltage-gated ion channel, and the absorption and emission spectra of the luciferine/luciferase complex. These examples show that the toolkit can be employed in a manifold of situations for both the electronic ground state and electronically excited states. It also allows for the automatic correction of the active space in the case of CASSCF calculations on an ensemble of geometries, as it is shown for the azobenzene derivative photoswitch case.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Programas Informáticos , Compuestos Azo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120451, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34627018

RESUMEN

Several experimental and theoretical studies have shown that 2D hybrid structures formed by boron, nitrogen and carbon atoms (h-BNCs) possess a highly tunable linear and non-linear optical responses. Recent advances towards the controlled synthesis of these unique structures have motivated an important number of experimental and theoretical work. In this work, the confinement on the optical response induced by boron-nitride (BN) strings in h-BNC 2D structures is investigated using time-dependent density functional theory (TDDFT) and electron density response properties. The number of surrounding BN strings (NBN) necessary to "isolate" the optical modes of a carbon nanoisland (nanographene) from the remaining substrate has been characterized in two different nanoisland models: benzene and pyrene. It was found that for NBN ≥ 3 the excitation wavelengths of the optically active modes remain constant and the changes in the transition densities, the ground to excited state density differences and their associated electron deformation orbitals are negligible and strongly confined within the carbon nanoisland. Using a water molecule as model system, Raman enhancement factors of 10 [6] for the water vibrational modes are obtained when these electromagnetic "hot spots" are activated by an external electromagnetic field. The high tunability of the optical absorption bands of nanographenes through changes in size and morphology makes h-BNCs be perfect materials to construct platforms for surface enhancement Raman spectroscopy (SERS) for a wide range of laser sources.

6.
Membranes (Basel) ; 13(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36676835

RESUMEN

The permeation of dioxin-like pollutants, namely, chlorinated dibenzodioxins and dibenzofurans, through lipid membranes has been simulated using classic molecular dynamics (CMD) combined with the umbrella sampling approach. The most toxic forms of chlorinated dibenzodioxin and dibenzofuran, 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD) and 2,3,7,8-tetrachlorodibenzofuran (TCDF), and a dioleyl-phosphatidylcholine (DOPC) lipid membrane of 50 Å wide have been chosen for our study. The free energy profile shows the penetration process is largely favoured thermodynamically (ΔG ≈ -12 kcal/mol), with a progressively decrease of the free energy until reaching the energy minima at distances of 8 Å and 9.5 Å from the centre of the membrane for, respectively, TCDD and TCDF. At the centre of the membrane, both molecules display subtle local maxima with free energy differences of 0.5 and 1 kcal/mol with respect to the energy minima for TCDD and TCDF, respectively. Furthermore, the intermolecular interactions between the molecules and the lipid membrane have been characterized at the minima and the local maxima using hybrid quantum mechanics/molecular mechanics energy decomposition analysis (QM/MM-EDA). Total interaction energies of -17.5 and -16.5 kcal/mol have been found at the energy minima for TCDD and TCDF, respectively. In both cases, the dispersion forces govern the molecule-membrane interactions, no significant changes have been found at the local maxima, in agreement with the classical free energy profile. The small differences found in the results obtained for TCDD and TCDF point out that the adsorption and diffusion processes through the cell membrane are not related to the different toxicity shown by these pollutants.

7.
Phys Chem Chem Phys ; 23(36): 20533-20540, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34505588

RESUMEN

We extend for the first time a quantum mechanical energy decomposition analysis scheme based on deformation electron densities to a hybrid electrostatic embedding quantum mechanics/molecular mechanics framework. The implemented approach is applied to characterize the interactions between cisplatin and a dioleyl-phosphatidylcholine membrane, which play a key role in the permeation mechanism of the drug inside the cells. The interaction energy decomposition into electrostatic, induction, dispersion and Pauli repulsion contributions is performed for ensembles of geometries to account for conformational sampling. It is evidenced that the electrostatic and repulsive components are predominant in both polar and non-polar regions of the bilayer.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , Fosfatidilcolinas/química , Teoría Cuántica , Modelos Moleculares , Estructura Molecular
8.
J Phys Chem A ; 125(37): 8337-8344, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34510896

RESUMEN

Herein, the power of multicenter electron delocalization analysis to elucidate the intricacies of concerted reaction mechanisms is brought to light by tracking the transition of [1,3] sigmatropic rearrangements from the high-barrier pericyclic mechanism in 1-butene to the barrierless pseudopericyclic mechanism in 1,2-diamino-1-nitrosooxyethane. This transition has been progressively achieved by substituting the migrating group, changing the donor and acceptor atoms, and functionalizing the alkene unit with weak and strong electron-donating and electron-withdrawing groups. Fourteen [1,3] sigmatropic reactions with electronic energy barriers ranging from 1 to 89 kcal/mol have been investigated. A very good correlation has been found between the barrier and the four-center electron delocalization at the transition state, the latter calculated for the atoms involved in the four-centered ring adduct formed along the reaction path. Surprisingly, the barrier has been found to be independent of the bond strength between the migrating group and the donor atom so that only the changes induced in the multicenter bonding control the kinetics of the reaction. Additional insights into the effect of atom substitution and group functionalization have also been extracted from the analysis of the multicenter electron delocalization profiles along the reaction path and qualitatively supported by the topological analysis of the electron density.

9.
J Chem Inf Model ; 61(9): 4455-4461, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34396775

RESUMEN

Herein, it is shown how anion recognition in highly polar solvents by neutral metal-free receptors is feasible when multiple hydrogen bonding and anion-π interactions are suitably combined. A neutral aromatic molecular tweezer functionalized with azo groups is shown to merge these two kinds of interactions in a unique system and its efficiency as an anion catcher in water is evaluated using first-principles quantum methods. Theoretical calculations unequivocally prove the high thermodynamic stability in water of a model anion, bromide, captured within the tweezer's cavity. Thus, static calculations indicate anion-tweezer interaction energies within the range of covalent or ionic bonds and stability constants in water of more than 10 orders of magnitude. First-principles molecular dynamics calculations also corroborate the stability through the time of the anion-tweezer complex in water. It shows that the anion is always found within the tweezer's cavity due to the combination of the tweezer-anion interactions plus a hydrogen bond between the anion and a water molecule that is inside the tweezer's cavity.


Asunto(s)
Agua , Aniones , Enlace de Hidrógeno , Solventes , Termodinámica
10.
Phys Chem Chem Phys ; 23(8): 4777-4783, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33599227

RESUMEN

Some of the most promising materials for application in molecular electronics and spintronics are based on diradical chains. Herein, the proposed relation between increasing conductance with length and diradical character is revisited using ab initio methods that account for the static electron correlation effects. Electron transmission was previously obtained from restricted single determinant wavefuntions or tight-binding approximations, which are unable to account for static correlation. Broken Symmetry Unrestricted Kohn-Sham Density Functional Theory (BS-UKS-DFT) in combination with electron transport analysis based on electron deformation orbitals (EDOs) reflects an exponential decay of the electrical conductance with length. Also, other important effects such as quantum interference are correctly accounted for, leading to a decrease of the conductance as the diradical character increases. As a proof-of-concept, the electrical conductance obtained from BS-UKS-DFT and CASSCF(2,2) wavefunctions were compared in diradical graphene strips in the frame of the pseudo-π approach, obtaining very similar results.

11.
Chemistry ; 26(68): 16138-16143, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32893901

RESUMEN

The Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians. With this, it was proven that π radicals of bowtie nanographenes sit on BP (Benzo[cd]Pyrene) moieties driven by their local aromaticity, a purely chemical concept, which confers global stability to the whole structure. Besides, a novel Pauli energy densities analysis provided a visual intuitive explanation for this preference. These findings allow envisioning that analogous bowtie nanographenes with arbitrary polyradical character are not only feasible at the molecular scale but will share Clar Goblet's peculiar properties.

12.
Nano Lett ; 19(10): 7394-7399, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525054

RESUMEN

An extraordinary new family of molecular junctions, inaccurately referred to as "anti-Ohmic" wires in the recent literature, has been proposed based on theoretical predictions. The unusual electron transport observed for these systems, characterized by a reversed exponential decay of their electrical conductance, might revolutionize the design of molecular electronic devices. This behavior, which has been associated with intrinsic diradical nature, is reexamined in this work. Since the diradical character arises from a near-degeneracy of the frontier orbitals, the employment of a multireference approach is mandatory. CASSCF calculations on a set of nanowires based on polycyclic aromatic hydrocarbons (PAHs) demonstrate that, in the frame of an appropriate multireference treatment, the ground state of these systems shows the expected exponential decay of the conductance. Interestingly, these calculations do evidence a reversed exponential decay of the conductance, although now in several excited states. Similar results have been obtained for other recently proposed candidates to "anti-Ohmic" wires. These findings open new horizons for possible applications in molecular electronics of these promising systems.

13.
Phys Chem Chem Phys ; 21(11): 6274-6286, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30834903

RESUMEN

The sum-over-states (SOS) method allows the computation of polarizabilities and hyperpolarizabilities additively from the contributions of different electronic excited states in a given molecule or cluster. Subsequent analysis of the main excited configurations contributing to the relevant excited states allows characterizing the orbitals involved in the linear and nonlinear optical response. Unfortunately, the chemically relevant information that can be obtained by SOS is hindered by a series of methodological and computational drawbacks. Among these drawbacks, we can highlight the high computational cost, problems arising from nonconvergent series and errors caused by the inaccurate description of excitation energies and/or higher excited state matrix elements. For this reason, coupled-perturbed schemes are currently widely used to determine the NLO potential of molecules and materials. However, such a choice limits the amount of intuitive chemical information that, on the other hand, can be retrieved by a successful SOS computation. In this work, we present and discuss a novel computational strategy that offers the means to extract the useful chemical insights from a coupled-perturbed calculation at almost negligible extra computational cost providing a transparent picture about orbital contributions to the properties of interest. The proposed method is based on the generation and further analysis of field-induced orbitals, FIOs, from the analytic or numerical derivatives of the dipole moment. Orbital symmetry rules are derived using group theory and the method is tested for a series of small and medium size systems.

14.
RSC Adv ; 9(44): 25790-25796, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530108

RESUMEN

Phosphate-metal-humic complexes are very relevant in nature due to their crucial role in phosphate availability for plants and microorganisms. Synthetic phosphate-calcium-humic acid (HA) complexes have proven to be efficient sources of available phosphorus for crops. However, the current knowledge about their structure and molecular features is very poor. The structural implications of phosphate interaction with humic binding sites through calcium bridges, in both monocalcium phosphate and dicalcium phosphate is investigated by using molecular modeling, 31P-NMR, 1H-NMR and X-ray diffractometry. The conformational changes in the molecular configuration of the humic acid involved in the interaction resulting from the synthetic process is also studied by using HPSEC and synchronous fluorescence. The results obtained allow us to identify the phosphate type in the crystalline phase that is involved in the interaction of humic acid binding sites and the different forms of calcium phosphate. Synchronous fluorescence also shows that whereas the conformational configuration of the HA binding site is only partially affected in the monocalcium phosphate interaction, it changes in the case of dicalcium phosphate showing simpler molecular arrangements. These changes in the molecular conformation of the binding site in HA in solution may influence the biological activity of the humic acid. On the other hand, HPSEC studies show that the humic-calcium-phosphate interaction is accompanied by increases in the humic acid apparent size distribution. This effect is more intense in the case of monocalcium phosphate system probably due the influence of pH.

15.
Nanoscale Adv ; 1(5): 1901-1913, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134239

RESUMEN

Hitherto, only molecular wires with a regular ohmic behavior in which the electric conductance decreases with the wire length have been synthesized. Implementation of molecular conductors with reversed conductance/length trend (anti-ohmic) might revolutionize the field of molecular electronics, allowing the development of electronic devices with extraordinary properties. It is for this reason that, recently, theoretical efforts have been focused on this topic and different structures have been proposed to show reversed conductance/length behavior on the basis of density functional theory non-equilibrium Green function approach (DFT-NEGF) and topological models. From the previous works, it can be stated that an anti-ohmic molecular wire must display a very small HOMO-LUMO gap and a reversed bond alternation pattern in the case of polyenes and related conjugated systems. In this work, the pursuit of a mechanism by which the anti-ohmic electron transport may arise was carried out by studying the paradigmatic anti-ohmic p-xylylene chain (pX2) at the DFT level in combination with topological models. It has been found that the electron transport in the anti-ohmic regime is favored by a long-range superexchange mechanism, which, contrary to what is expected, is reinforced by the increase in the length of the chain. Moreover, strong links between anti-ohmic character in molecular wires and one-dimensional topological insulator models have been established. Due to the small HOMO-LUMO gap predicted at DFT level, the anti-ohmic character has been put to the proof using a multireference scenario. Preliminary results point out to the presence of different ohmic and anti-ohmic electronic states. In the particular case of pX2 the anti-ohmic states do not correspond to the ground state. These findings require a reconsideration of previous studies on the reversed conductance/length behavior using single reference methodologies.

16.
Phys Chem Chem Phys ; 18(22): 15312-21, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27210053

RESUMEN

Due to the great interest that biochemical sensors constructed from graphene nanostructures have raised recently, in this work we analyse in detail the electronic factors responsible for the large affinity of biomolecular units for graphene surfaces using ab initio quantum chemical tools based on density functional theory. Both finite and periodic graphene structures have been employed in our study. Whereas the former allows the analysis of the different energy components contributing to the interaction energy separately, the periodic structure provides a more realistic calculation of the total adsorption energy in an extended graphene surface and serves to validate the results obtained using the finite model. In addition, qualitative relations between interaction energy and electron polarization upon adsorption have been established using the finite model. In this work, we have analysed thermodynamically stable adsorption complexes formed by glycine, melamine, pyronin cation, porphine, tetrabenzoporphine and phthalocyanine with a 2D structure of ninety six carbons and periodic structures formed by cells of fifty and seventy two carbons. Differences in the electrostatic, Pauli repulsion, induction and dispersion energies among aromatic and non-aromatic molecules, charged and non-charged molecules and H-π and stacking interactions have been thoroughly analysed in this work.


Asunto(s)
Grafito/química , Nanoestructuras/química , Adsorción , Electrones , Glicina/química , Indoles/química , Isoindoles , Modelos Moleculares , Porfirinas/química , Teoría Cuántica , Electricidad Estática , Propiedades de Superficie , Termodinámica , Triazinas/química
17.
Phys Chem Chem Phys ; 17(26): 16826-34, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26058486

RESUMEN

The unusual aromatic stability of cyclic bicalicene has been suggested to come from a tetraionic structure, where positive and negative charges are located on the cyclopropene and cyclopentadiene rings, respectively. Energetic, magnetic, geometric and electron delocalization analysis performed on a series of bicalicene derivatives, incorporating different electron donating and withdrawing groups, and electrically perturbed bicalicene structures provide additional proof of the role played by this tetraionic structure in the aromatic stability of bicalicene. In this work the aromatic stabilization is chemically and electrically tuned, enhancing or disrupting the electron delocalization and aromatic stability of the cyclopropene and cyclopentadiene rings by increasing or decreasing their corresponding charges. It is shown how the electron delocalization within these rings is similar to that of cyclopropene cation and cyclopentadiene anion for a perfect polarization of one electron.

18.
Phys Chem Chem Phys ; 17(1): 575-87, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25407229

RESUMEN

The suitability of implicitly dispersion-corrected functionals, namely the M06-2X, for the determination of interaction energies and electron polarization densities in adsorption studies of aromatic molecules on carbon allotropes surfaces is analysed by comparing the results with those obtained using explicit dispersion through Grimme's empirical corrections. Several models of increasing size for the graphene sheet together with one-dimensional curved carbon structures, (5,5), (6,6) and (7,7) armchair single-walled nanotubes, and two-dimensional curved carbon structures, C60 fullerene, have been considered as substrates in this work, whereas pyridine has been chosen as an example for the adsorbed aromatic molecule. Comparison with recent experimental estimations of the adsorption energy and calculations using periodic boundary conditions on a supercell of 72 carbon atoms indicates that a finite model containing ninety six carbon atoms (C96) approaches quite well the adsorption on a graphene sheet. Analysis of the interaction energy components reveals that the M06-2X functional accounts for most of the dispersion energy implicitly, followed far by wB97X and B3LYP, whereas B97 and BLYP do not differ too much from HF. It has been found that M06-2X corrects only the energy component associated to dispersion and leaves the rest, electrostatic, Pauli and induction "unaltered" with respect to the other DFT functionals investigated. Moreover, only the M06-2X functional reflects the effect of dispersion on the electron polarization density, whereas for the remaining functionals the polarization density does not differ too much from the HF density. This makes the former functional more suitable a priori for the calculation of electron density related properties in these adsorption complexes.

19.
Chemphyschem ; 15(18): 4067-76, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25263101

RESUMEN

In this study, we analyzed the Raman spectrum of a water molecule adsorbed on a cluster of 20 silver atoms, and the plasmonic electromagnetic effect of the silver surface was also considered to give a theoretical prediction of the surface-enhanced Raman scattering spectrum. The calculations were performed at the density functional theory (DFT) level by using both frozen and unfrozen silver clusters. Two different models were used to consider the plasmonic enhancement; one of them was a modified classical (dipole) model and the other was the coupled perturbed Hartree-Fock method with excitation frequencies obtained from time-dependent DFT calculations and with proper detuning of these frequencies. The importance of small geometrical distortions of the silver surface in the orientation of the adsorbed water was shown. Moreover, it was shown how the symmetry of the transition dipole moment and the symmetry of the vibrational modes influence the Raman intensities of the SERS spectrum.

20.
J Phys Chem A ; 118(21): 3827-3834, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24689867

RESUMEN

Ortiz and Seminario (J. Chem. Phys. 2007, 127, 111106/1-3) proposed some years ago a simple and direct approach to obtain I/V profiles from the combination of ab initio equilibrium electronic structure calculations and the uncertainty principle as an alternative or complementary tool to more sophisticated nonequilibrium Green's functions methods. In this work, we revisit the fundamentals of this approach and reformulate accordingly the expression of the electric current. By analogy to the spontaneous electron decay process in electron transitions, in our revision, the current is calculated upon the relaxing process from the "polarized" state induced by the external electric field to the electronic ground state. The electric current is obtained from the total charge transferred through the molecule and the corresponding electronic energy relaxation. The electric current expression proposed is more general compared with the previous expression employed by Ortiz and Seminario, where the charge variation must be tested among different slabs of atoms at the contact. This new approach has been tested on benzene-1,4-dithiolate attached to different gold clusters that represent the contact with the electrodes. Analysis of the total electron deformation density induced by the external electric voltage and properties associated with the electron deformation orbitals supports the conclusions obtained from the I/V profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA