Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484684

RESUMEN

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Asunto(s)
Fertilizantes , Silicio , Silicio/farmacología , Suelo/química , Transporte Biológico , Plantas/metabolismo , Minerales/metabolismo
2.
Plants (Basel) ; 13(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337989

RESUMEN

Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) have become indispensable tools in unraveling the genetic basis of complex traits in various plant species. In this study, a comprehensive GWAS was conducted on diverse tomato (Solanum lycopersicum L.) accessions grown under normal and low P conditions for two weeks. Plant traits such as shoot height, primary root length, plant biomass, shoot inorganic content (SiP), and root inorganic content (RiP) were measured. Among several models of GWAS tested, the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) models were used for the identification of single nucleotide polymorphisms (SNPs). Among all the traits analyzed, significantly associated SNPs were recorded for PB, i.e., 1 SNP (SSL4.0CH10_49261145) under control P, SiP, i.e., 1 SNP (SSL4.0CH08_58433186) under control P and 1 SNP (SSL4.0CH08_51271168) under low P and RiP i.e., 2 SNPs (SSL4.0CH04_37267952 and SSL4.0CH09_4609062) under control P and 1 SNP (SSL4.0CH09_3930922) under low P condition. The identified SNPs served as genetic markers pinpointing regions of the tomato genome linked to P-responsive traits. The novel candidate genes associated with the identified SNPs were further analyzed for their protein-protein interactions using STRING. The study provided novel candidate genes, viz. Solyc10g050370 for PB under control, Solyc08g062490, and Solyc08g062500 for SiP and Solyc09g010450, Solyc09g010460, Solyc09g010690, and Solyc09g010710 for RiP under low P condition. These findings offer a glimpse into the genetic diversity of tomato accessions' responses to P uptake, highlighting the potential for tailored breeding programs to develop P-efficient tomato varieties that could adapt to varying soil conditions, making them crucial for sustainable agriculture and addressing global challenges, such as soil depletion and food security.

3.
Plant Physiol Biochem ; 203: 108057, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37793194

RESUMEN

Nodulin 26-like intrinsic protein (NIP) subfamily of aquaporins (AQPs) in plants, is known to be involved in the uptake of metalloids including boron, germanium (Ge), arsenic (As), and silicon (Si). In the present study, a thorough evaluation of 55 AQPs found in the mungbean genome, including phylogenetic distribution, sequence homology, expression profiling, and structural characterization, contributed to the identification of VrNIP2-1 as a metalloid transporter. The pore-morphology of VrNIP2-1 was studied using molecular dynamics simulation. Interestingly, VrNIP2-1 was found to harbor an aromatic/arginine (ar/R) selectivity filter formed with ASGR amino acids instead of GSGR systematically reported in metalloid transporters (NIP2s) in higher plants. Evaluation of diverse cultivars showed a high level of Si accumulation in leaves indicating functional Si transport in mungbean. In addition, heterologous expression of VrNIP2-1 in yeast revealed As(III) and GeO2 transport activity. Similarly, VrNIP2-1 expression in Xenopus oocytes confirmed its Si transport ability. The metalloid transport activity with unique structural features will be helpful to better understand the solute specificity of NIP2s in mungbean and related pulses. The information provided here will also serve as a basis to improve Si uptake while restricting hazardous metalloids like As in plants.


Asunto(s)
Acuaporinas , Arsénico , Metaloides , Vigna , Vigna/genética , Vigna/metabolismo , Filogenia , Acuaporinas/genética , Acuaporinas/metabolismo , Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Silicio/metabolismo , Arsénico/metabolismo
4.
Front Plant Sci ; 14: 1184058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416889

RESUMEN

The 14-3-3 protein is a kind of evolutionary ubiquitous protein family highly conserved in eukaryotes. Initially, 14-3-3 proteins were reported in mammalian nervous tissues, but in the last decade, their role in various metabolic pathways in plants established the importance of 14-3-3 proteins. In the present study, a total of 22 14-3-3 genes, also called general regulatory factors (GRF), were identified in the peanut (Arachis hypogaea) genome, out of which 12 belonged to the ε group, whereas 10 of them belonged to the non- ε-group. Tissue-specific expression of identified 14-3-3 genes were studied using transcriptome analysis. The peanut AhGRFi gene was cloned and transformed into Arabidopsis thaliana. The investigation of subcellular localization indicated that AhGRFi is localized in the cytoplasm. Overexpression of the AhGRFi gene in transgenic Arabidopsis showed that under exogenous 1-naphthaleneacetic acid (NAA) treatment, root growth inhibition in transgenic plants was enhanced. Further analysis indicated that the expression of auxin-responsive genes IAA3, IAA7, IAA17, and SAUR-AC1 was upregulated and GH3.2 and GH3.3 were downregulated in transgenic plants, but the expression of GH3.2, GH3.3, and SAUR-AC1 showed opposite trends of change under NAA treatment. These results suggest that AhGRFi may be involved in auxin signaling during seedling root development. An in-depth study of the molecular mechanism of this process remains to be further explored.

5.
Genes (Basel) ; 14(3)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36980842

RESUMEN

Solanum lycopersicum cv. Pusa Ruby (PR) is a superior tomato cultivar routinely used as a model tomato variety. Here, we report a reference-guided genome assembly for PR, covering 97.6% of the total single-copy genes in the solanales order. The PR genome contains 34,075 genes and 423,288 variants, out of which 127,131 are intragenic and 1232 are of high impact. The assembly was packaged according to PanSol guidelines (N50 = 60,396,827) with the largest scaffold measuring 85 megabases. The similarity of the PR genome assembly to Heinz1706, M82, and Fla.8924 was measured and the results suggest PR has the lowest affinity towards the hybrid Fla.8924. We then analyzed the regeneration efficiency of PR in comparison to another variety, Pusa Early Dwarf (PED). PR was found to have a high regeneration rate (45.51%) and therefore, we performed allele mining for genes associated with regeneration and found that only AGAMOUS-LIKE15 has a null mutation. Further, allele mining for fruit quality-related genes was also executed. The PR genome has an Ovate mutation leading to round fruit shape, causing economically undesirable fruit cracking. This genomic data can be potentially used for large scale crop improvement programs as well as functional annotation studies.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Mutación , Genómica , Frutas/genética
6.
Sci Total Environ ; 864: 160972, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566865

RESUMEN

Arsenic contamination in aquatic and terrestrial ecosystem is a serious environmental issue. Both natural and anthropogenic processes can introduce it into the environment. The speciation of the As determine the level of its toxicity. Among the four oxidation states of As (-3, 0, +3, and + 5), As(III) and As(V) are the common species found in the environment, As(III) being the more toxic with adverse impact on the plants and animals including human health. Therefore, it is very necessary to remediate arsenic from the polluted water and soil. Different physicochemical as well as biological strategies can be used for the amelioration of arsenic polluted soil. Among the microbial approaches, oxidation of arsenite, methylation of arsenic, biosorption, bioprecipitation and bioaccumulation are the promising transformation activities in arsenic remediation. The purpose of this review is to discuss the significance of the microorganisms in As toxicity amelioration in soil, factors affecting the microbial remediation, interaction of the plants with As resistant bacteria, and the effect of microorganisms on plant arsenic tolerance mechanism. In addition, the exploration of genetic engineering of the bacteria has a huge importance in bioremediation strategies, as the engineered microbes are more potent in terms of remediation activity along with quick adaptively in As polluted sites.


Asunto(s)
Arsénico , Contaminantes del Suelo , Humanos , Arsénico/análisis , Ecosistema , Bacterias/genética , Biodegradación Ambiental , Plantas , Suelo , Contaminantes del Suelo/toxicidad
7.
Cells ; 11(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36429050

RESUMEN

Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.


Asunto(s)
Enterobacter , Genómica , Enterobacter/genética , Silicatos , Silicio , Plantas/genética , ADN
8.
Cells ; 11(7)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406707

RESUMEN

Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice.


Asunto(s)
Oryza , Culinaria , Grano Comestible , Expresión Génica , Haplotipos/genética , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido Simple
9.
Environ Pollut ; 294: 118606, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863894

RESUMEN

Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H2O2, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.


Asunto(s)
Acuaporinas , Arsénico , Cajanus , Germanio , Antimonio , Acuaporinas/genética , Cajanus/genética , Peróxido de Hidrógeno , Silicio
10.
Mol Biol Rep ; 49(2): 1329-1339, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34855106

RESUMEN

BACKGROUND: The Sugar Will Eventually Be Exported Transporters (SWEET), consisting of the MtN3 and salvia domain, are sugar transporters having an active role in diverse activities in plants such as pollen nutrition, phloem loading, nectar secretion, reproductive tissue development, and plant-pathogen interaction. The SWEET genes have been characterized only in a few fruit crop species. METHODS AND RESULTS: In this study, a total of 15 SWEET genes were identified in the pomegranate (Punica granatum) genome. The gene structure, transmembrane (TM) helices, domain architecture, and phylogenetic relationships of these genes were evaluated using computational approaches. Genes were further classified as Semi-SWEETs or SWEETs based on the TM domains. Similarly, pomegranate, Arabidopsis, rice, and soybean SWEETs were studied together to classify into major groups. In addition, analysis of RNAseq transcriptome data was performed to study SWEEET gene expression dynamics in different tissue. The expression suggests that SWEETs are mostly expressed in pomegranate peel. In addition, PgSWEET13 was found to be differentially expressed under high salinity stress in pomegranate. Further, quantitative PCR analysis confirmed the expression of four candidate genes in leaf and stem tissues. CONCLUSION: The information provided here will help to understand the role of SWEET genes in fruit development and under abiotic stress conditions in pomegranate.


Asunto(s)
Granada (Fruta)/genética , Estrés Fisiológico/genética , Arabidopsis/genética , Transporte Biológico , Frutas/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Lythraceae/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Granada (Fruta)/crecimiento & desarrollo , Glycine max/genética , Transcriptoma/genética
11.
Plant Cell Physiol ; 63(1): 4-18, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34558628

RESUMEN

Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability. In recent years, advances in our understanding of the role of Si-solubilizing bacteria and the efficacy of Si nanoparticles have been made. However, there are many unknown aspects associated with structural and functional features of Si transporters, Si loading into the xylem, and the role of specialized cells like silica cells and compounds preventing Si polymerization in plant tissues. In addition, despite several 1,000 reports showing the positive effects of Si in high as well as low Si-accumulating plant species, the exact roles of Si at the molecular level are yet to be understood. Some evidence suggests that Si regulates hormonal pathways and nutrient uptake, thereby explaining various observed benefits of Si uptake. However, how Si modulates hormonal pathways or improves nutrient uptake remains to be explained. Finally, we summarize the knowledge gaps that will provide a roadmap for further research on plant silicon biology, leading to an exploration of the benefits of Si uptake to enhance crop production.


Asunto(s)
Disponibilidad Biológica , Transporte Biológico/efectos de los fármacos , Productos Agrícolas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Silicio/metabolismo
12.
Cells ; 12(1)2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36611890

RESUMEN

Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) -0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean.


Asunto(s)
Glycine max , Sitios de Carácter Cuantitativo , Glycine max/química , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Transcriptoma/genética , Fitomejoramiento , Semillas/metabolismo , Aceites de Plantas/metabolismo , Genómica
13.
Plant Physiol Biochem ; 166: 128-139, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102436

RESUMEN

Rice blast caused by Magnaporthe oryzae and sheath blight caused by Rhizoctonia solani, are the two major diseases of rice that cause enormous losses in rice production worldwide. Identification and utilization of broad-spectrum resistance resources have been considered sustainable and effective strategies. However, the majority of the resistance genes and QTLs identified have often been found to be race-specific, and their resistance is frequently broken down due to continuous exposure to the pathogen. Therefore, integrated approaches to improve plant resistance against such devastating pathogen have great importance. Silicon (Si), a beneficial element for plant growth, has shown to provide a prophylactic effect against many pathogens. The application of Si helps the plants to combat the disease-causing pathogens, either through its deposition in different parts of the plant or through modulation/induction of specific defense genes by yet an unknown mechanism. Some reports have shown that Si imparts resistance to rice blast and sheath blight. The present review summarizes the mechanism of Si transport and deposition and its effect on rice growth and development. A special emphasis has been given to explore the existing evidence showing Si mediated blast and sheath blight resistance and the mechanism involved in resistance. This review will help to understand the prophylactic effects of Si against sheath blight and blast disease at the mechanical, physiological, and genetic levels. The information provided here will help develop a strategy to explore Si derived benefits for sustainable rice production.


Asunto(s)
Oryza , Ascomicetos , Resistencia a la Enfermedad , Oryza/genética , Enfermedades de las Plantas , Rhizoctonia , Silicio/farmacología
14.
Plant Physiol Biochem ; 165: 173-186, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34044226

RESUMEN

Silicon (Si) is an omnipresent and second most abundant element in the soil lithosphere after oxygen. Silicon being a beneficial element imparts several benefits to the plants and animals. In many plant species, including the cereals the uptake of Si from the soil even exceeds the uptake of essential nutrients. Cereals are the monocots which are known to accumulate a high amount of Si, and reaping maximum benefits associated with it. Cereals contribute a high amount of Si to the human diet compared to other food crops. In the present review, we have summarized distribution of the dietary Si in cereals and its role in the animal and human health. The Si derived benefits in cereals, specifically with respect to biotic and abiotic stress tolerance has been described. We have also discussed the molecular mechanism involved in the Si uptake in cereals, evolution of the Si transport mechanism and genetic variation in the Si concentration among different cultivars of the same species. Various genetic mutants deficient in the Si uptake have been developed and many QTLs governing the Si accumulation have been identified in cereals. The existing knowledge about the Si biology and available resources needs to be explored to understand and improve the Si accumulation in crop plants to achieve sustainability in agriculture.


Asunto(s)
Grano Comestible , Silicio , Animales , Transporte Biológico , Suelo , Estrés Fisiológico
15.
J Hazard Mater ; 408: 124910, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33453583

RESUMEN

Uptake of hazardous metal(loid)s adversely affects plants and imposes a threat to the entire food chain. Here, the role of aquaporins (AQPs) providing tolerance against hazardous metal(loid)s in plants is discussed to provide a perspective on the present understanding, knowledge gaps, and opportunities. Plants adopt complex molecular and physiological mechanisms for better tolerance, adaptability, and survival under metal(loid)s stress. Water conservation in plants is one such primary strategies regulated by AQPs, a family of channel-forming proteins facilitating the transport of water and many other solutes. The strategy is more evident with reports suggesting differential expression of AQPs adopted by plants to cope with the heavy metal stress. In this regard, numerous studies showing enhanced tolerance against hazardous elements in plants due to AQPs activity are discussed. Consequently, present understanding of various aspects of AQPs, such as tertiary-structure, transport activity, solute-specificity, differential expression, gating mechanism, and subcellular localization, are reviewed. Similarly, various tools and techniques are discussed in detail aiming at efficient utilization of resources and knowledge to combat metal(loid)s stress. The scope of AQP transgenesis focusing on heavy metal stresses is also highlighted. The information provided here will be helpful to design efficient strategies for the development of metal(loid)s stress-tolerant crops.


Asunto(s)
Acuaporinas , Metales Pesados , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Metales Pesados/toxicidad , Plantas/genética , Plantas/metabolismo
16.
J Hazard Mater ; 409: 124598, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33234398

RESUMEN

Aquaporins (AQPs) facilitates the transport of small solutes like water, urea, carbon dioxide, boron, and silicon (Si) and plays a critical role in important physiological processes. In this study, genome-wide characterization of AQPs was performed in bottle gourd. A total of 36 AQPs were identified in the bottle gourd, which were subsequently analyzed to understand the pore-morphology, exon-intron structure, subcellular-localization. In addition, available transcriptome data was used to study the tissue-specific expression. Several AQPs showed tissue-specific expression, more notably the LsiTIP3-1 having a high level of expression in flowers and fruits. Based on the in-silico prediction of solute specificity, LsiNIP2-1 was predicted to be a Si transporter. Silicon was quantified in different tissues, including root, young leaves, mature leaves, tendrils, and fruits of bottle gourd plants. More than 1.3% Si (d.w.) was observed in bottle gourd leaves, testified the in-silico predictions. Silicon deposition evaluated with an energy-dispersive X-ray coupled with a scanning electron microscope showed a high Si accumulation in the shaft of leaf trichomes. Similarly, co-localization of Si with arsenic and antimony was observed. Expression profiling performed with real-time quantitative PCR showed differential expression of AQPs in response to Si supplementation. The information provided in the present study will be helpful to better understand the AQP transport mechanism, particularly Si and other metalloids transport and localization in plants.


Asunto(s)
Acuaporinas , Metaloides , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Plantas/metabolismo , Silicio
17.
Physiol Plant ; 171(4): 476-482, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32208519

RESUMEN

Silicon, a quasi-essential element for plants, improves vigour and resilience under stress. Recently, studies on textile hemp (Cannabis sativa L.) showed its genetic predisposition to uptake silicic acid and accumulate it as silica in epidermal leaf cells and trichomes. Here, microscopy, silicon quantification and gene expression analysis of candidate genes involved in salt stress were performed in hemp to investigate whether the metalloid protects against salinity. The results obtained with microscopy reveal that silicon treatment ameliorated the symptoms of salinity in older fan leaves, where the xylem tissue showed vessels with a wider lumen. In younger ones, it was difficult to assess any mitigation of stress symptoms after silicon application. At the gene level, salinity with and without silicon induced the expression of a putative Si efflux transporter gene 2 (low silicon 2, Lsi2). The addition of the metalloid did not result in any statistically significant changes in the expression of genes involved in stress response, although a trend towards a decrease was observed. In conclusion, our results show that hemp stress symptoms can be alleviated in older leaves by silicon application, that the metalloid is accumulated in fan leaves and highlight one putative rice Lsi2 orthologue as responsive to salinity.


Asunto(s)
Cannabis , Oryza , Hojas de la Planta , Salinidad , Estrés Salino , Silicio/farmacología
18.
Physiol Plant ; 172(2): 847-868, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33180329

RESUMEN

Amid apprehension of global climate change, crop plants are inevitably confronted with a myriad of abiotic stress factors during their growth that inflicts a serious threat to their development and overall productivity. These abiotic stresses comprise extreme temperature, pH, high saline soil, and drought stress. Among different abiotic stresses, drought is considered the most calamitous stressor with its serious impact on the crops' yield stability. The development of climate-resilient crops that withstands reduced water availability is a major focus of the scientific fraternity to ensure the food security of the sharply increasing population. Numerous studies aim to recognize the key regulators of molecular and biochemical processes associated with drought stress tolerance response. A few potential candidates are now considered as promising targets for crop improvement. Transcription factors act as a key regulatory switch controlling the gene expression of diverse biological processes and, eventually, the metabolic processes. Understanding the role and regulation of the transcription factors will facilitate the crop improvement strategies intending to develop and deliver agronomically-superior crops. Therefore, in this review, we have emphasized the molecular avenues of the transcription factors that can be exploited to engineer drought tolerance potential in crop plants. We have discussed the molecular role of several transcription factors, such as basic leucine zipper (bZIP), dehydration responsive element binding (DREB), DNA binding with one finger (DOF), heat shock factor (HSF), MYB, NAC, TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP), and WRKY. We have also highlighted candidate transcription factors that can be used for the development of drought-tolerant crops.


Asunto(s)
Productos Agrícolas/fisiología , Sequías , Estrés Fisiológico , Factores de Transcripción , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Genes (Basel) ; 11(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256228

RESUMEN

Metacaspases (MCs), a class of cysteine-dependent proteases found in plants, fungi, and protozoa, are predominately involved in programmed cell death processes. In this study, we identified metacaspase genes in cultivated and wild rice species. Characterization of metacaspase genes identified both in cultivated subspecies of Oryza sativa, japonica, and indica and in nine wild rice species was performed. Extensive computational analysis was conducted to understand gene structures, phylogenetic relationships, cis-regulatory elements, expression patterns, and haplotypic variations. Further, the haplotyping study of metacaspase genes was conducted using the whole-genome resequencing data publicly available for 4726 diverse genotype and in-house resequencing data generated for north-east Indian rice lines. Sequence variations observed among wild and cultivated rice species for metacaspase genes were used to understand the duplication and neofunctionalization events. The expression profiles of metacaspase genes were analyzed using RNA-seq transcriptome profiling in rice during different developmental stages and stress conditions. Real-time quantitative PCR analysis of candidate metacaspase genes in rice cultivars Pusa Basmati-1 in response to Magnaporthe oryzae infection indicated a significant role in the disease resistance mechanism. The information provided here will help to understand the evolution of metacaspases and their role under stress conditions in rice.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Oryza/genética , Regulación de la Expresión Génica de las Plantas/genética , Transcriptoma/genética
20.
J Exp Bot ; 71(21): 6703-6718, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-32592476

RESUMEN

Numerous studies have shown the beneficial effects of silicon (Si) for plant growth, particularly under stress conditions, and hence a detailed understanding of the mechanisms of its uptake, subsequent transport, and accumulation in different tissues is important. Here, we provide a thorough review of our current knowledge of how plants benefit from Si supplementation. The molecular mechanisms involved in Si transport are discussed and we highlight gaps in our knowledge, particularly with regards to xylem unloading and transport into heavily silicified cells. Silicification of tissues such as sclerenchyma, fibers, storage tissues, the epidermis, and vascular tissues are described. Silicon deposition in different cell types, tissues, and intercellular spaces that affect morphological and physiological properties associated with enhanced plant resilience under various biotic and abiotic stresses are addressed in detail. Most Si-derived benefits are the result of interference in physiological processes, modulation of stress responses, and biochemical interactions. A better understanding of the versatile roles of Si in plants requires more detailed knowledge of the specific mechanisms involved in its deposition in different tissues, at different developmental stages, and under different environmental conditions.


Asunto(s)
Plantas , Silicio , Transporte Biológico , Desarrollo de la Planta , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...