Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 24(1): 4-14, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26498802

RESUMEN

The detection of nickel in water is of great importance due to its harmfulness for living organism. A way to detect Ni is the use of whole-cell biosensors. The aim of the present work was to build a light-emitting bacterial biosensor for the detection of Ni with high specificity and low detection limit properties. For that purpose, the regulatory circuit implemented relied on the RcnR Ni/Co metallo-regulator and its rcnA natural target promoter fused to the lux reporter genes. To convert RcnR to specifically detect Ni, several mutations were tested and the C35A retained. Deleting the Ni efflux pump rcnA and introducing genes encoding several Ni-uptake systems lowered the detection thresholds. When these constructs were assayed in several Escherichia coli strains, it appeared that the detection thresholds were highly variable. The TD2158 wild-type E. coli gave rise to a biosensor ten times more active and sensitive than its W3110 E. coli K12 equivalent. This biosensor was able to confidently detect Ni concentrations as little as 80 nM (4.7 µg l-1), which makes its use compatible with the norms governing the drinking water quality.


Asunto(s)
Técnicas Biosensibles , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Luminiscentes/metabolismo , Níquel/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Proteínas Luminiscentes/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sensibilidad y Especificidad
2.
Metallomics ; 7(4): 691-701, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25652141

RESUMEN

Bacteria require nickel transporters for the synthesis of Ni-containing metalloenzymes in natural, low nickel habitats. In this work we carry out functional and topological characterization of Rhizobium leguminosarum HupE, a nickel permease required for the provision of this element for [NiFe] hydrogenase synthesis. Expression studies in the Escherichia coli nikABCDE mutant strain HYD723 revealed that HupE is a medium-affinity permease (apparent Km 227 ± 21 nM; Vmax 49 ± 21 pmol Ni(2+) min(-1) mg(-1) bacterial dry weight) that functions as an energy-independent diffusion facilitator for the uptake of Ni(ii) ions. This Ni(2+) transport is not inhibited by similar cations such as Mn(2+), Zn(2+), or Co(2+), but is blocked by Cu(2+). Analysis of site-directed HupE mutants allowed the identification of several residues (H36, D42, H43, F69, E90, H130, and E133) that are essential for HupE-mediated Ni uptake in E. coli cells. By using translational fusions to reporter genes we demonstrated the presence of five transmembrane domains with a periplasmic N-terminal domain and a C-terminal domain buried in the lipid bilayer. The periplasmic N-terminal domain contributes to stability and functionality of the protein.


Asunto(s)
Proteínas Bacterianas/química , Hidrogenasas/química , Proteínas de la Membrana/química , Níquel/química , Rhizobium leguminosarum/química , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Genes Reporteros , Ligandos , Membrana Dobles de Lípidos/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Estructura Terciaria de Proteína
3.
Metallomics ; 6(8): 1400-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24658095

RESUMEN

Divalent cations play fundamental roles in biological systems where they act as structural and reactive determinants. Their high reactivity with biomolecules has forced living cells to evolve specific pathways for their in vivo handling. For instance the excess of metal can be expelled by dedicated efflux systems. The E. coli RcnA efflux pump expels both Ni and Co. This pump functions together with the periplasmic protein RcnB to maintain metal ion homeostasis. To gain insights into the efflux mechanism, metal binding properties of RcnB were investigated. Initial screening of metal ions by fluorescence quenching revealed Cu as a potential ligand for RcnB. Non-denaturing mass spectrometry and ITC experiments revealed the binding of one Cu ion per monomer with a micromolar affinity. This set of in vitro techniques was broadened by in vivo experiments that showed the accuracy of Cu binding by RcnB. RcnB implication in Cu detoxification was questioned and growth experiments as well as transcriptional analysis excluded a role for RcnB in Cu adaptation. Finally a mutant in a conserved methionine residue (Met86) displayed altered Cu binding. This mutant protein when tested for its Ni and Co resistance capacity was unable to complement an rcn mutant. Taken together these data show that RcnB is a new Cu-binding protein that is strikingly involved in a Ni/Co efflux system.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Cobalto/metabolismo , Proteínas Transportadoras de Cobre , Níquel/metabolismo
4.
Metallomics ; 5(1): 68-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23235558

RESUMEN

Nickel and cobalt are obligate nutrients for the gammaproteobacteria but when present at high concentrations they display toxic effects. These two metals are present in the environment, their origin being either from natural sources or from industrial use. In this study, the effect of inhibitory concentrations of Ni or Co was assessed on the soil bacterium Pseudomonas putida KT2440 using a proteomic approach. The identification of more than 400 spots resulted in the quantification of 160 proteins that underwent significant variations in cells exposed to Co and Ni. This analysis allowed us to depict the cellular response of P. putida cells toward metallic stress. More precisely, the parallel comparison of the two proteomes showed distinct responses of P. putida to Ni or Co toxicity. The most striking effect of Co was revealed by the accumulation of several proteins involved in the defense against oxidative damage, which include proteins involved in the detoxification of the reactive oxygen species, superoxides and peroxides. The up-regulation of the genes encoding these enzymes was confirmed using qRT-PCR. Interestingly, in the Ni-treated samples, sodB, encoding superoxide dismutase, was up-regulated, indicating the apparition of superoxide radicals due to the presence of Ni. However, the most striking effect of Ni was the accumulation of several proteins involved in the synthesis of amino acids. The measurement of the amount of amino acids in Ni-treated cells revealed a strong accumulation of glutamate.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobalto/metabolismo , Níquel/metabolismo , Pseudomonas putida/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Cobalto/toxicidad , Regulación Bacteriana de la Expresión Génica , Níquel/toxicidad , Estrés Oxidativo , Proteoma/metabolismo , Proteómica , Pseudomonas putida/efectos de los fármacos , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , ARN Mensajero/genética
5.
J Bacteriol ; 193(15): 3785-93, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21665978

RESUMEN

Nickel and cobalt are both essential trace elements that are toxic when present in excess. The main resistance mechanism that bacteria use to overcome this toxicity is the efflux of these cations out of the cytoplasm. RND (resistance-nodulation-cell division)- and MFS (major facilitator superfamily)-type efflux systems are known to export either nickel or cobalt. The RcnA efflux pump, which belongs to a unique family, is responsible for the detoxification of Ni and Co in Escherichia coli. In this work, the role of the gene yohN, which is located downstream of rcnA, is investigated. yohN is cotranscribed with rcnA, and its expression is induced by Ni and Co. Surprisingly, in contrast to the effect of deleting rcnA, deletion of yohN conferred enhanced resistance to Ni and Co in E. coli, accompanied by decreased metal accumulation. We show that YohN is localized to the periplasm and does not bind Ni or Co ions directly. Physiological and genetic experiments demonstrate that YohN is not involved in Ni import. YohN is conserved among proteobacteria and belongs to a new family of proteins; consequently, yohN has been renamed rcnB. We show that the enhanced resistance of rcnB mutants to Ni and Co and their decreased Ni and Co intracellular accumulation are linked to the greater efflux of these ions in the absence of rcnB. Taken together, these results suggest that RcnB is required to maintain metal ion homeostasis, in conjunction with the efflux pump RcnA, presumably by modulating RcnA-mediated export of Ni and Co to avoid excess efflux of Ni and Co ions via an unknown novel mechanism.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Níquel/metabolismo , Proteínas Periplasmáticas/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/genética , Proteínas Transportadoras de Cobre , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Periplasmáticas/genética
6.
Biochimie ; 93(3): 434-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21040754

RESUMEN

RcnA is an efflux pump responsible for Ni and Co detoxification in Escherichia coli. The expression of rcnA is induced by Ni and Co via the metallo-regulator RcnR. In the present work, the functioning of the promoter-operator region of rcnR and rcnA was investigated using primer extension and DNAse I footprinting experiments. We show that the promoters of rcnR and rcnA are convergent and that apo-RcnR binds on symmetrically located sequences in this intergenic region. Moreover, RcnR DNA binding is specifically modulated by one Ni or Co equivalent and not by other metals. In addition to rcnA, RcnR controls expression of its own gene in response to Ni and Co, but the two genes are differentially expressed.


Asunto(s)
Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Níquel/metabolismo , Regiones Operadoras Genéticas/genética , Proteínas Represoras/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/química , Proteínas Represoras/genética
7.
J Bacteriol ; 192(4): 925-35, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20023036

RESUMEN

Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the translated product of hupE2, a hydrogenase-unlinked gene identified in the R. leguminosarum genome. HupE2 is a potential membrane protein that shows 48% amino acid sequence identity with HupE. Expression of both genes in the Escherichia coli nikABCDE mutant strain HYD723 restored hydrogenase activity and nickel transport. However, nickel transport assays revealed that HupE and HupE2 displayed different levels of nickel uptake. Site-directed mutagenesis of histidine residues in HupE revealed two motifs (HX(5)DH and FHGX[AV]HGXE) that are required for HupE functionality. An R. leguminosarum double mutant, SPF22A (hupE hupE2), exhibited reduced levels of hydrogenase activity in free-living cells, and this phenotype was complemented by nickel supplementation. Low levels of symbiotic hydrogenase activity were also observed in SPF22A bacteroid cells from lentil (Lens culinaris L.) root nodules but not in pea (Pisum sativum L.) bacteroids. Moreover, heterologous expression of the R. leguminosarum hup system in bacteroid cells of Rhizobium tropici and Mesorhizobium loti displayed reduced levels of hydrogen uptake in the absence of hupE. These data support the role of R. leguminosarum HupE as a nickel permease required for hydrogen uptake under both free-living and symbiotic conditions.


Asunto(s)
Proteínas Bacterianas/fisiología , Hidrogenasas/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Níquel/metabolismo , Rhizobium leguminosarum/fisiología , Rhizobium tropici/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Medios de Cultivo/química , Escherichia coli/genética , Eliminación de Gen , Expresión Génica , Orden Génico , Genes Bacterianos , Prueba de Complementación Genética , Hidrogenasas/genética , Hidrogenasas/fisiología , Lens (Planta)/microbiología , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Pisum sativum/microbiología , Rhizobium leguminosarum/genética , Rhizobium tropici/genética , Alineación de Secuencia , Simbiosis
8.
Appl Environ Microbiol ; 75(6): 1723-33, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19168650

RESUMEN

The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Biopelículas/crecimiento & desarrollo , Escherichia coli K12/efectos de los fármacos , Proteínas de Escherichia coli/biosíntesis , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Níquel/toxicidad , Adaptación Fisiológica , Escherichia coli K12/fisiología , Magnesio/toxicidad
9.
Chem Commun (Camb) ; (15): 1813-5, 2008 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-18379702

RESUMEN

The dissociation constant of Ni(II) for Escherichia coli NikR was determined using three independent techniques, including binding kinetics, and shown to be in the sub-micromolar range.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Níquel/metabolismo , Proteínas Represoras/metabolismo , Unión Proteica , Espectrofotometría Ultravioleta
10.
J Bacteriol ; 187(8): 2912-6, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15805538

RESUMEN

We report here on the isolation and primary characterization of the yohM gene of Escherichia coli. We show that yohM encodes a membrane-bound polypeptide conferring increased nickel and cobalt resistance in E. coli. yohM was specifically induced by nickel or cobalt but not by cadmium, zinc, or copper. Mutation of yohM increased the accumulation of nickel inside the cell, whereas cells harboring yohM in multicopy displayed reduced intracellular nickel content. Our data support the hypothesis that YohM is the first described efflux system for nickel and cobalt in E. coli. We propose rcnA (resistance to cobalt and nickel) as the new denomination of yohM.


Asunto(s)
Cobalto/farmacología , Farmacorresistencia Bacteriana/fisiología , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Proteínas de la Membrana/aislamiento & purificación , Níquel/farmacología , Secuencia de Aminoácidos , Transporte Biológico , Cobalto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Níquel/metabolismo , Homología de Secuencia de Aminoácido
11.
Mol Microbiol ; 49(4): 947-63, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12890020

RESUMEN

The Helicobacter pylori genome contains a gene (hp1338 or nikR) that encodes a nickel-dependent regulator that is homologous to the Escherichia coli nickel-responsive regulator, NikR. The H. pylori nikR product acts as a pleiotropic metal-dependent regulator. We constructed a non-polar isogenic mutant deleted for the nikR gene. NikR was essential for the survival of H. pylori in the presence of high nickel and cobalt ion concentrations in vitro. We screened a DNA macroarray for genes that were differentially expressed in parental and nikR-deficient H. pylori strains grown in the presence of excess nickel. We found that H. pylori NikR mediates the expression of nickel-activated and -repressed genes. In the presence of excess nickel, NikR activated the transcription of ureA-ureB (hp72-73), nixA (hp1077 ), copA2 (hp1072), hpn (hp1427 ) and hpn-like (hp1432) genes and repressed the expression of genes encoding proteins involved in ferric iron uptake and storage [pfr (hp0653), fur (hp1027 ), frpB4 (hp1512), exbB/exbD (hp1339-1340), ceuE (hp1561)], motility [cheV (hp616), flaA (hp0601), flaB (hp0115 )], stress responses [hrcA-grpE-dnaK (hp111-110-109)] and encoding outer-membrane proteins [omp11(hp0472), omp31 (hp1469), omp32 (hp1501)]. Slot blot DNA/RNA hybridization experiments using RNA from three independent bacterial cultures confirmed the transcriptome data for 10 selected genes. The results of gel shift experiments using purified native NikR, beta-galactosidase assays with the region between nikR and the exbB/exbD divergent operon, and the study of exbB gene expression using a gentamicin/apramycin reporter gene in H. pylori indicated that NikR is an autorepressor that binds to this intergenic region and also controls the expression of the exbB/exbD/tonB operon, which provides energy for ferric iron uptake. Thus, as previously suggested for Fur in H. pylori, NikR appears to be a global regulator of the metabolism of some divalent cations within a highly complex regulated network.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Bacterianos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Vectores Genéticos , Datos de Secuencia Molecular , Níquel/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Operón , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética
12.
Biochimie ; 85(6): 575-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12829374

RESUMEN

Large subunits of NiFe-hydrogenases undergo a unique maturation process in which the last step consists of the endoproteolytic cleavage of the C-terminal extension after the Ni-Fe metal center has been assembled. To assess in vivo the influence of alteration of the C-terminal extension on the processing, green fluorescence protein (GFP) was fused to the C-terminus of the large subunit (HybC) of the Escherichia coli hydrogenase 2. Interestingly, no processing of HybC-GFP was observed. In addition, the chromophore of GFP was not formed, implying a nonproductive folding of the upstream HybC moiety. These results strongly suggest that the alteration of the C-terminus of the hydrogenase 2 large subunit interferes with the folding and processing of HybC.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hidrogenasas/química , Hidrogenasas/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Hidrogenasas/aislamiento & purificación , Técnicas In Vitro , Datos de Secuencia Molecular , Níquel/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
13.
J Bacteriol ; 184(20): 5706-13, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12270829

RESUMEN

The transition metal nickel is an essential cofactor for a number of bacterial enzymes, one of which is urease. Prior to its incorporation into metalloenzyme active sites, nickel must be imported into the cell. Here, we report identification of two loci corresponding to nickel-specific transport systems in the gram-negative, ureolytic bacterium Yersinia pseudotuberculosis. The loci are located on each side of the chromosomal urease gene cluster ureABCEFGD and have the same orientation as the latter. The yntABCDE locus upstream of the ure genes encodes five predicted products with sequence homology to ATP-binding cassette nickel permeases present in several gram-negative bacteria. The ureH gene, located downstream of ure, encodes a single-component carrier which displays homology to polypeptides of the nickel-cobalt transporter family. Transporters with homology to these two classes are also present (again in proximity to the urease locus) in the other two pathogenic yersiniae, Y. pestis and Y. enterocolitica. An Escherichia coli nikA insertion mutant recovered nickel uptake ability following heterologous complementation with either the ynt or the ureH plasmid-borne gene of Y. pseudotuberculosis, demonstrating that each carrier is necessary and sufficient for nickel transport. Deletion of ynt in Y. pseudotuberculosis almost completely abolished bacterial urease activity, whereas deletion of ureH had no effect. Nevertheless, rates of nickel transport were significantly altered in both ynt and ureH mutants. Furthermore, the ynt ureH double mutant was totally devoid of nickel uptake ability, thus indicating that Ynt and UreH constitute the only routes for nickel entry. Both Ynt and UreH show selectivity for Ni(2+) ions. This is the first reported identification of genes coding for both kinds of nickel-specific permeases situated adjacent to the urease gene cluster in the genome of a microorganism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Proteínas de Transporte de Membrana/genética , Níquel/metabolismo , Ureasa/metabolismo , Yersinia pseudotuberculosis/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Transporte Biológico , Mapeo Cromosómico , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Ureasa/genética , Yersinia pseudotuberculosis/enzimología , Yersinia pseudotuberculosis/metabolismo , Infecciones por Yersinia pseudotuberculosis/microbiología
14.
Microbiology (Reading) ; 143 ( Pt 8): 2657-2664, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9274019

RESUMEN

The effect of the addition of trimethylamine N-oxide (TMAO) in the growth medium on Escherichia coli anaerobic fermentative and respiratory pathways was examined. Formate dehydrogenase H (FDH-H) activity was totally repressed by the addition of 40 mM TMAO, whereas the overall hydrogenase (HYD) activity was reduced by 25%. Accordingly, expression of lacZ operon fusions with the fdhF and hycB structural genes specifying FDH-H and HYD3 was reduced sevenfold and eightfold, respectively, leading to suppression of an active formate hydrogenlyase system. In contrast, global respiratory formate-dependent phenazine methosulphate reductase (FDH-PMS) activity, which consists of both the major anaerobic FDH-N enzyme and the aerobic FDH-Z isoenzyme, was increased approximately twofold. This was corroborated by a 2.5-fold stimulation of the sole fdoG-uidA transcriptional fusion which reflects the synthesis of the respiratory aerobic FDH-Z enzyme. In fdhD, fdhE or torA mutants lacking either FDH-PMS activity or TMAO reductase (TOR) activity, the formate hydrogenlyase pathway was no longer inhibited by TMAO. In addition, introduction of 30 mM formate in the growth medium was found to relieve the repressive effect of TMAO in the wild-type strain. When TMAO was added as terminal electron acceptor a significant enhancement of anaerobic growth was observed with the wild-type strain and the fdoG mutant. It was associated with the concomitant suppression of the formate hydrogenlyase enzymes. This was in contrast to the fdnG and torA mutants whose growth pattern and fermentative enzymes remained unaffected. Taken together, these results strongly suggest that formate-dependent reduction of TMAO via FDH-N and TOR reduces the amount of formate available for induction of the formate hydrogenlyase pathway.


Asunto(s)
Escherichia coli/genética , Formiato Deshidrogenasas/genética , Formiatos/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrogenasas/genética , Metilaminas/farmacología , Complejos Multienzimáticos/genética , Oxidantes/farmacología , Anaerobiosis , Transporte de Electrón , Represión Enzimática , Escherichia coli/efectos de los fármacos , Formiato Deshidrogenasas/metabolismo , Genes Bacterianos , Metosulfato de Metilfenazonio/metabolismo , Mutación , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...