Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(4): 112378, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37060566

RESUMEN

The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.


Asunto(s)
Linfocitos B , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Tejido Linfoide , Transducción de Señal , Bazo
2.
Immunity ; 55(6): 970-972, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35704998

RESUMEN

Regulatory B cells infiltrate the microenvironment of solid tumors. However, their identification and characterization remain incomplete. In this issue of Immunity, Wang and colleagues characterize a new subset of leucine-induced regulatory B cells involved in colorectal cancer (CRC) immunoevasion in mice and humans.


Asunto(s)
Linfocitos B Reguladores , Neoplasias Colorrectales , Neoplasias , Animales , Dieta , Leucina , Ratones , Músculos , Microambiente Tumoral
3.
Eur J Immunol ; 52(8): 1335-1349, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579560

RESUMEN

CD4+ FOXP3+ Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE. Following disease induction, autoreactive Tregs upregulated LAG-3 and CTLA-4 in LNs, while IL-10 and amphiregulin (AREG) were increased in CNS Tregs. Using genetic approaches, we demonstrated that IL-10, CTLA-4, and LAG-3 were nonredundantly required for the protective function of antigen receptor-engineered Tregs against EAE in cell therapy whereas AREG was dispensable. Treg-derived IL-10 and CTLA-4 were both required to suppress acute autoreactive CD4+ T-cell activation, which correlated with disease control. These molecules also affected the accumulation in the recipients of engineered Tregs themselves, underlying complex roles for these molecules. Noteworthy, despite the persistence of the transferred Tregs and their protective effect, autoreactive T cells eventually accumulated in the spleen of treated mice. In conclusion, this study highlights the remarkable power of antigen receptor-engineered Tregs to appropriately provide multiple suppressive factors nonredundantly necessary to prevent autoimmune attacks.


Asunto(s)
Autoinmunidad , Enfermedades del Sistema Inmune , Animales , Antígeno CTLA-4 , Tratamiento Basado en Trasplante de Células y Tejidos , Factores de Transcripción Forkhead/genética , Interleucina-10 , Ratones , Receptores de Antígenos , Linfocitos T Reguladores
4.
Blood Adv ; 5(21): 4338-4351, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516642

RESUMEN

Tissue invasion by tumor cells induces a host inflammatory response that variably impacts tumorigenesis. This has been well documented for tumor-associated macrophages (TAMs) that could play a pro/M2- or an anti/M1-tumoral function. TAMs frequently infiltrate diffuse large B-cell lymphoma (DLBCL), an aggressive neoplasm arising from germinal center-experienced B cells. However, the pathway leading to the presence of TAMs in DLBCL remains unknown, and their impact is unclear. Here, we show that some DLBCL tumor cells expressed the chemokine CCL5, enabling the differential recruitment of blood monocytes through their expression of CCR1 and CCR5. CCL5 expression by DLBCL was not related to molecular subtypes, and healthy tonsillar B cells did not produce this chemokine, implying a posttransformation event. A single-cell analysis revealed that most DLBCL TAMs had a noncanonical gene signature with the concomitant expression of M1 and M2 genes. The presence of noncanonical TAMs may explain the lack of impact of macrophages on DLBCL development reported in some survival studies.


Asunto(s)
Linfoma de Células B Grandes Difuso , Quimiocina CCL5/genética , Centro Germinal , Humanos , Recuento de Leucocitos , Macrófagos , Monocitos , Microambiente Tumoral
5.
Curr Opin Immunol ; 71: 132-137, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34411773

RESUMEN

The TNF superfamily member a proliferation inducing ligand (APRIL, TNFSF13) plays a late role in humoral immunity at the level of antibody-producing plasmocytes. The recent characterization of the first immunodeficient patient with an inactivating mutation in the APRIL gene provided the last piece of functional data lacking in the human system. Based on this function, APRIL has been considered as a valuable target to dampen unwanted antibody production. After reviewing the late data acquired on the physiological function of APRIL in humoral immunity, we will here review the state of the art regarding APRIL targeting in autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Proliferación Celular , Humanos , Ligandos , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
6.
Nat Rev Rheumatol ; 17(2): 98-108, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33339987

RESUMEN

B lymphocytes have a central role in autoimmune diseases, which are often defined by specific autoantibody patterns and feature a loss of B cell tolerance. A prototypic disease associated with B cell hyperactivity is systemic lupus erythematosus (SLE). In patients with SLE, the loss of B cell tolerance to autoantigens is controlled in a cell-intrinsic manner by Toll-like receptors (TLRs), which sense nucleic acids in endosomes. TLR7 drives the extrafollicular B cell response and the germinal centre reaction that are involved in autoantibody production and disease pathogenesis. Surprisingly, TLR9 seems to protect against SLE, even though it is required for the production of autoantibodies recognizing double-stranded DNA-associated antigens, which are abundant in SLE and are a hallmark of this disease. The protective function of TLR9 is at least partly mediated by its capacity to limit the stimulatory activity of TLR7. The roles of TLR7 and TLR9 in the effector function of B cells in lupus-like disease and in patients with SLE, and the unique features of TLR signalling in B cells, suggest that targeting TLR signalling in SLE might be therapeutically beneficial.


Asunto(s)
Linfocitos B/inmunología , Lupus Eritematoso Sistémico/inmunología , Receptores Toll-Like/metabolismo , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Linfocitos B/fisiología , Humanos , Ratones , Transducción de Señal , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/inmunología
7.
Semin Immunol ; 44: 101323, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31685302

RESUMEN

It has long been assumed that the functions of B cells reflected the roles of antibodies. However, B cells also decisively influence immunity via antibody-independent mechanisms including the presentation of antigen to T cells and the secretion of cytokines. In fact, B cell depletion therapy improves the course of autoimmune diseases such as multiple sclerosis by removing pro-inflammatory cytokine-producing B cells rather than by reducing autoantibody levels. Remarkably, B cells can also produce anti-inflammatory cytokines, and subsequently suppress immunity, providing protection from autoimmune diseases while interfering with beneficial responses against pathogens and cancers. A major mediator of this B cell regulatory function is their secretion of IL-10. There is considerable interest in identifying the mechanisms inducing the expression of IL-10 in B cells during the course of their activation. Here, we review the molecular mechanisms controlling IL-10 expression in B cells, and the evidence that IL-10-producing B cells play a protective role in human autoimmune diseases, underlying the relevance of this immunosuppressive axis for therapy.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos B Reguladores/inmunología , Interleucina-10/inmunología , Animales , Humanos
8.
Ann Neurol ; 85(3): 406-420, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30635946

RESUMEN

OBJECTIVE: The two related tumor necrosis factor members a proliferation-inducing ligand (APRIL) and B-cell activation factor (BAFF) are currently targeted in autoimmune diseases as B-cell regulators. In multiple sclerosis (MS), combined APRIL/BAFF blockade led to unexpected exacerbated inflammation in the central nervous system (CNS) of patients. Here, we investigate the role of the APRIL/BAFF axis in the CNS. METHODS: APRIL expression was analyzed in MS lesions by immunohistochemistry. The in vivo role of APRIL was assessed in the murine MS model, experimental autoimmune encephalitis (EAE). Functional in vitro studies were performed with human and mouse astrocytes. RESULTS: APRIL was expressed in lesions from EAE. In its absence, the disease was worst. Lesions from MS patients also showed APRIL expression upon infiltration of macrophages. Notably, all the APRIL secreted by these macrophages specifically targeted astrocytes. The upregulation of chondroitin sulfate proteoglycan, sometimes bearing chondroitin sulfate of type E sugar moieties, binding APRIL, in reactive astrocytes explained the latter selectivity. Astrocytes responded to APRIL by producing a sufficient amount of IL-10 to dampen antigen-specific T-cell proliferation and pathogenic cytokine secretion. Finally, an intraspinal delivery of recombinant APRIL before disease onset, shortly reduced EAE symptoms. Repeated intravenous injections of recombinant APRIL before and even at disease onset also had an effect. INTERPRETATION: Our data show that APRIL mediates an anti-inflammatory response from astrocytes in MS lesions. This protective activity is not shared with BAFF. ANN NEUROL 2019;85:406-420.


Asunto(s)
Astrocitos/metabolismo , Factor Activador de Células B/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Adulto , Anciano , Animales , Astrocitos/inmunología , Astrocitos/patología , Proliferación Celular , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sulfatos de Condroitina/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inmunohistoquímica , Interleucina-10/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/farmacología
9.
J Autoimmun ; 95: 179-190, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30385081

RESUMEN

Autoimmunity occurs when an adaptive immune response is directed against a self-antigen. As such, autoimmune reactions associated with the production of autoantibodies are common. These autoantibodies may either be pathogenic by inducing the initial damage to self, or exacerbate the reaction secondarily to the initial damage. In both cases, the pathway(s) leading to exposure of the immune system to the self-antigen inducing the production of autoantibodies is largely unknown. The latter is largely complicating the setting of putative prophylactic treatments. As a consequence, one possible way to control these diseases is to eliminate the cells producing antibodies. We will see that this approach is not yet part of any treatment in autoimmunity. Indeed, all the currently available non-specific immunosuppressive treatments do not target directly quiescent antibody-producing plasma cells. However, treatments aimed at depleting precursors of plasma cells, mature B-lymphocytes and/or antigen-experienced B cells not yet fully differentiated into plasma cells, are emerging. Such strategies were recently proven to be highly successful in several autoimmune disorders by two independent ways. The first way is by induction of B-cell cytotoxicity with an antibody directed against the surface antigen CD20. The second way is by antagonism of a key B-cell survival factor, the B-cell activation factor from the TNF superfamily (BAFF). In the present review, we will focus on the current knowledge regarding the role of a molecule related to BAFF, a proliferation-inducing ligand (APRIL), in autoimmune diseases, which acts on antibody-producing plasma cells. We will discuss expectations deriving from APRIL targeting in autoimmune diseases.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Enfermedades Autoinmunes/terapia , Autoinmunidad/efectos de los fármacos , Factor Activador de Células B/inmunología , Terapia Molecular Dirigida/métodos , Células Plasmáticas/efectos de los fármacos , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Antígenos CD20/genética , Antígenos CD20/inmunología , Autoanticuerpos , Autoantígenos/genética , Autoantígenos/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Factor Activador de Células B/antagonistas & inhibidores , Factor Activador de Células B/genética , Subgrupos de Linfocitos B/efectos de los fármacos , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/patología , Citotoxicidad Inmunológica , Regulación de la Expresión Génica , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunosupresores/uso terapéutico , Células Plasmáticas/inmunología , Células Plasmáticas/patología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/antagonistas & inhibidores , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética
10.
Cancer Res ; 77(5): 1097-1107, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923834

RESUMEN

Tumor-infiltrating neutrophils have been implicated in malignant development and progression, but mechanisms are ill defined. Neutrophils produce a proliferation-inducing ligand APRIL/TNFSF13, a factor that promotes development of tumors from diverse origins, including diffuse large B-cell lymphoma (DLBCL). High APRIL expression in DLBCL correlates with reduced patient survival, but the pathway(s) dictating APRIL expression are not known. Here, we show that all blood neutrophils constitutively secrete APRIL, and inflammation-associated stimuli, such as TNF, further upregulate APRIL. In a significant fraction of DLBCL patients, tumor cells constitutively produced the ELC-CXC chemokine CXCL-8 (IL8), enabling them to recruit APRIL-producing blood neutrophils. CXCL-8 production in DLBCL was unrelated to the cell of origin, as APRIL-producing neutrophils infiltrated CXCL-8+ DLBCL from both germinal center (GC) and non-GC subtypes. Rather, CXCL-8 production implied events affecting DNA methylation and acetylation. Overall, our results showed that chemokine-mediated recruitment of neutrophils secreting the tumor-promoting factor APRIL mediates DLBCL progression. Cancer Res; 77(5); 1097-107. ©2016 AACR.


Asunto(s)
Interleucina-8/biosíntesis , Linfoma de Células B Grandes Difuso/inmunología , Neutrófilos/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/biosíntesis , Animales , Humanos , Interleucina-8/inmunología , Ligandos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Ratones , Neutrófilos/metabolismo , Neutrófilos/patología , Microambiente Tumoral/inmunología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología
11.
J Am Soc Nephrol ; 28(4): 1227-1238, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27920152

RESUMEN

The TNF family member a proliferation-inducing ligand (APRIL; also known as TNFSF13), produced by myeloid cells, participates in the generation and survival of antibody-producing plasma cells. We studied the potential role of APRIL in the pathogenesis of IgA nephropathy (IgAN). We found that a significant proportion of germinal centers (GCs) in tonsils of patients with IgAN contained cells aberrantly producing APRIL, contributing to an overall upregulation of tonsillar APRIL expression compared with that in tonsils of control patients with tonsillitis. In IgAN GC, antigen-experienced IgD-CD38+/-CD19+ B cells expressing a switched IgG/IgA B cell receptor produced APRIL. Notably, these GC B cells expressed mRNA encoding the common cleavable APRIL-α but also, the less frequent APRIL-δ/ζ mRNA, which encodes a protein that lacks a furin cleavage site and is, thus, the uncleavable membrane-bound form. Significant correlation between TLR9 and APRIL expression levels existed in tonsils from patients with IgAN. In vitro, repeated TLR9 stimulation induced APRIL expression in tonsillar B cells from control patients with tonsillitis. Clinically, aberrant APRIL expression in tonsillar GC correlated with greater proteinuria, and patients with IgAN and aberrant APRIL overexpression in tonsillar GC responded well to tonsillectomy, with parallel decreases in serum levels of galactose-deficient IgA1. Taken together, our data indicate that antibody disorders in IgAN associate with TLR9-induced aberrant expression of APRIL in tonsillar GC B cells.


Asunto(s)
Linfocitos B/metabolismo , Centro Germinal/citología , Centro Germinal/metabolismo , Glomerulonefritis por IGA/etiología , Glomerulonefritis por IGA/metabolismo , Receptor Toll-Like 9/fisiología , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/biosíntesis , Adulto , Femenino , Humanos , Masculino , Tonsila Palatina
12.
Crit Rev Oncol Hematol ; 105: 1-4, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27497026

RESUMEN

IL-6, a cytokine with broad functions in inflammation and immunity, has been extensively studied for its role on normal antibody-producing plasma cells. In addition, IL-6 is recognized as a proliferative factor for multiple myeloma (MM), a malignant plasma cell tumor developing in the bone marrow. Blocking IL-6 signaling was thus developed into a therapeutic approach for MM already early after its discovery, in 1991. Unfortunately, the first clinical trials did not demonstrate a clear benefit, but despite this apparent failure hopes on IL-6 antagonism are still high and trials ongoing. The cellular source of IL-6 has long been a matter of debate. IL-6 was first recognized as an autocrine factor produced by the malignant plasma cells themselves, but later reports clearly showed that IL-6 was a paracrine factor, produced by the microenvironment, mostly by cells from the myeloid lineage. Recently, we have confirmed that IL-6 originates from myeloid lineage cells, mainly from myeloid precursors. We have also demonstrated that IL-6 amplifies the pool of myeloid cells producing a second key factor for MM, a proliferation inducing ligand (APRIL). These findings form a new rationale for IL-6 inhibition in MM and for new ways to use IL-6 blocking in the clinics.


Asunto(s)
Interleucina-6/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , Médula Ósea/inmunología , Humanos , Interleucina-6/inmunología , Mieloma Múltiple/inmunología , Células Plasmáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...