Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Heliyon ; 10(7): e28859, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38596056

Freshwater ecosystems are among the most important ecosystems worldwide, however, over the last centuries, anthropogenic pressures have had catastrophic effects on them. Mercury (Hg) is one of the main environmental contaminants which globally affect ecosystems and particularly freshwater wildlife. While Hg originates from natural sources, anthropogenic activities such as agriculture, biomass combustion, and gold mining increase its concentrations. Gold mining activities are the main drivers of Hg emission in tropical ecosystems and are responsible for up to 38% of global emissions. Once in its methylated form (MeHg), mercury biomagnifies through the trophic chain and accumulates in top predators. Due to the toxicity of MeHg, long-lived predators are even more subjected to chronic effects as they accumulate Hg over time. In the present study we quantified Hg contamination in two top predators, the Black caiman Melanosuchus niger and the Agami heron Agamia agami, and in their prey in the Kaw-Roura Nature Reserve in French Guiana and evaluated the biomagnification rate in the trophic chain. Our results show that despite a TMF in the range of others in the region (4.38 in our study), top predators of the ecosystem present elevated concentrations of Hg. We have found elevated Hg concentrations in the blood of adult Black caiman (2.10 ± 0.652 µg g-1 dw) and chicks of Agami heron (1.089 ± 0.406 µg g-1 dw). These findings highlight the need to better evaluate the potential impact of Hg in freshwater top predators, especially regarding reprotoxic effects.

2.
Sci Total Environ ; 837: 155846, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35561901

Trace elements in the blood of crocodilians and the factors that influence their concentrations are overall poorly documented. However, determination of influencing factors is crucial to assess the relevance of caimans as bioindicators of environmental contamination, and potential toxicological impact of trace elements on these reptiles. In the present study, we determined the concentrations of 14 trace elements (Ag, As, Cd, Cr, Co, Cu, Fe, Hg, Pb, Mn, Ni, Se, V, and Zn) in the blood of four French Guiana caiman species (the Spectacled Caiman Caiman crocodilus [n = 34], the Black Caiman Melanosuchus niger [n = 25], the Dwarf Caiman Paleosuchus palpebrosus [n = 5] and the Smooth-fronted Caiman Paleosuchus trigonatus [n = 20]) from 8 different sites, and further investigated the influence of individual body size and stable isotopes as proxies of foraging habitat and trophic position on trace element concentrations. Trophic position was identified to be an important factor influencing trace element concentrations in the four caiman species and explained interspecific variations. These findings highlight the need to consider trophic ecology when crocodilians are used as bioindicators of trace element contamination in environmental studies.


Alligators and Crocodiles , Trace Elements , Animals , Environmental Biomarkers , Environmental Monitoring , French Guiana , Isotopes
3.
J Exp Biol ; 224(24)2021 12 15.
Article En | MEDLINE | ID: mdl-34845497

For animals to survive until reproduction, it is crucial that juveniles successfully detect potential predators and respond with appropriate behavior. The recognition of cues originating from predators can be innate or learned. Cues of various modalities might be used alone or in multi-modal combinations to detect and distinguish predators but studies investigating multi-modal integration in predator avoidance are scarce. Here, we used wild, naive tadpoles of the Neotropical poison frog Allobates femoralis ( Boulenger, 1884) to test their reaction to cues with two modalities from two different sympatrically occurring potential predators: heterospecific predatory Dendrobates tinctorius tadpoles and dragonfly larvae. We presented A. femoralis tadpoles with olfactory or visual cues, or a combination of the two, and compared their reaction to a water control in a between-individual design. In our trials, A. femoralis tadpoles reacted to multi-modal stimuli (a combination of visual and chemical information) originating from dragonfly larvae with avoidance but showed no reaction to uni-modal cues or cues from heterospecific tadpoles. In addition, visual cues from conspecifics increased swimming activity while cues from predators had no effect on tadpole activity. Our results show that A. femoralis tadpoles can innately recognize some predators and probably need both visual and chemical information to effectively avoid them. This is the first study looking at anti-predator behavior in poison frog tadpoles. We discuss how parental care might influence the expression of predator avoidance responses in tadpoles.


Odonata , Poisons , Animals , Cues , Larva/physiology , Predatory Behavior , Ranidae/physiology
4.
Environ Pollut ; 286: 117549, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34438486

Environmental contaminants affect ecosystems worldwide and have deleterious effects on biota. Non-essential mercury (Hg) and lead (Pb) concentrations are well documented in some taxa and are described to cause multiple detrimental effects on human and wildlife. Additionally, essential selenium (Se) is known to be toxic at high concentrations but, at lower concentrations, Se can protect organisms against Hg toxicity. Crocodilians are known to bioaccumulate contaminants. However, the effects of these contaminants on physiological processes remain poorly studied. In the present study, we quantified Hg, Pb and Se concentrations in spectacled caimans (Caiman crocodilus) and investigated the effects of these contaminants on several physiological processes linked to osmoregulatory, hepatic, endocrine and renal functions measured through blood parameters in 23 individuals. Mercury was related to disruption of osmoregulation (sodium levels), hepatic function (alkaline phosphatase levels) and endocrine processes (corticosterone levels). Lead was related to disruption of hepatic functions (glucose and alanine aminotransferase levels). Selenium was not related to any parameters, but the Se:Hg molar ratio was positively related to the Na+ and corticosterone concentrations, suggesting a potential protective effect against Hg toxicity. Overall, our results suggest that Hg and Pb alter physiological mechanisms in wild caimans and highlight the need to thoroughly investigate the consequences of trace element contamination in crocodilians.


Alligators and Crocodiles , Mercury , Selenium , Trace Elements , Animals , Ecosystem , Humans , Mercury/toxicity
5.
Arch Environ Contam Toxicol ; 81(1): 15-24, 2021 Jul.
Article En | MEDLINE | ID: mdl-33899129

Mercury (Hg) is a global environmental contaminant that affects ecosystems. It is known to biomagnify through food webs and to bioaccumulate especially in the tissues of top predators. Large-scale comparisons between taxa and geographic areas are needed to reveal critical trends related to Hg contamination and its deleterious effects on wildlife. Yet, the large variety of tissues (keratinized tissues, internal organs, blood) as well as the variability in the units used to express Hg concentrations (either in wet- or dry-tissue weight) limits straightforward comparisons between studies. In the present study, we assessed the moisture content that could influence the total Hg (THg) concentrations measured in several tissues (claws, scutes, total blood, and red blood cells) of three caiman species. We evaluated the moisture content from the different tissues to provide information on THg concentrations in various matrices. Our results show a difference of THg concentrations between the tissues and intra- and interspecific variations of moisture content, with the highest THg values found in keratinized tissues (scute keratinized layers and claws). For the three species, we found positive relationships between body size and THg concentration in keratinized tissues. In the blood, the relationship between body size and THg concentration was species-dependent. Our results emphasize the need for a standardized evaluation of THg concentration and trace elements quantification based on dry weight analytical procedures. In addition, the use of both blood and keratinized tissues offers the possibility to quantify different time scales of THg exposure by non-lethal sampling.


Alligators and Crocodiles , Mercury , Water Pollutants, Chemical , Animals , Biological Monitoring , Ecosystem , Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis
6.
Environ Res ; 194: 110494, 2021 03.
Article En | MEDLINE | ID: mdl-33220243

The deleterious effects of mercury (Hg) contamination are well documented in humans and wildlife. Chronic exposure via diet and maternal transfer are two pathways which increase the toxicological risk for wild populations. However, few studies examined the physiological impact of Hg in crocodilians. We investigated the Hg contamination in neonate Smooth-fronted Caimans, Paleosuchus trigonatus, and the use of keratinized tissues and blood to evaluate maternal transfer. Between November 2017 and February 2020, we sampled 38 neonates from 4 distinct nests. Mercury concentration was measured in claws, scutes and total blood. Highest Hg concentrations were found in claws. Strong inter-nest variations (Hg ranging from 0.17 ± 0.02 to 0.66 ± 0.07 µg.g-1 dw) presumably reflect maternal transfer. Reduced body size in neonates characterized by elevated Hg concentrations suggests an influence of Hg during embryonic development. We emphasize the use of claws as an alternative to egg collection to investigate maternal transfer in crocodilians. Our results demonstrated the need of further investigation of the impact of Hg contamination in the first life stages of crocodilians.


Alligators and Crocodiles , Mercury , Animals , Body Size , Female , Humans , Infant, Newborn , Mercury/toxicity , Mothers , Specimen Handling
7.
Mol Ecol ; 27(9): 2289-2301, 2018 05.
Article En | MEDLINE | ID: mdl-29633409

Parental decisions in animals are often context-dependent and shaped by fitness trade-offs between parents and offspring. For example, the selection of breeding habitats can considerably impact the fitness of both offspring and parents, and therefore, parents should carefully weigh the costs and benefits of available options for their current and future reproductive success. Here, we show that resource-use preferences are shaped by a trade-off between parental effort and offspring safety in a tadpole-transporting frog. In a large-scale in situ experiment, we investigated decision strategies across an entire population of poison frogs that distribute their tadpoles across multiple water bodies. Pool use followed a dynamic and sequential selection process, and transportation became more efficient over time. Our results point to a complex suite of environmental variables that are considered during offspring deposition, which necessitates a highly dynamic and flexible decision-making process in tadpole-transporting frogs.


Anura/physiology , Behavior, Animal , Sexual Behavior, Animal , Animal Distribution , Animals , Breeding , Choice Behavior , Ecosystem , Female , Homing Behavior , Larva/physiology , Male , Reproduction
8.
Anim Behav ; 116: 89-98, 2016 06.
Article En | MEDLINE | ID: mdl-28239185

The ability to associate environmental cues with valuable resources strongly increases the chances of finding them again, and thus memory often guides animal movement. For example, many temperate region amphibians show strong breeding site fidelity and will return to the same areas even after the ponds have been destroyed. In contrast, many tropical amphibians depend on exploitation of small, scattered and fluctuating resources such as ephemeral pools for reproduction. It remains unknown whether tropical amphibians rely on spatial memory for effective exploitation of their reproductive resources. Poison frogs (Dendrobatidae) routinely shuttle their tadpoles from terrestrial clutches to dispersed aquatic deposition sites. We investigated the role of spatial memory for relocating previously discovered deposition sites in an experimental population of the brilliant-thighed poison frog, Allobates femoralis, a species with predominantly male tadpole transport. We temporarily removed an array of artificial pools that served as the principal tadpole deposition resource for the population. In parallel, we set up an array of sham sites and sites containing conspecific tadpole odour cues. We then quantified the movement patterns and site preferences of tadpole-transporting males by intensive sampling of the area and tracking individual frogs. We found that tadpole-carrier movements were concentrated around the exact locations of removed pools and most individuals visited several removed pool sites. In addition, we found that tadpole-transporting frogs were attracted to novel sites that contained high concentrations of conspecific olfactory tadpole cues. Our results suggest that A. femoralis males rely heavily on spatial memory for efficient exploitation of multiple, widely dispersed deposition sites once they are discovered. Additionally, olfactory cues may facilitate the initial discovery of the new sites.

9.
Mol Ecol Resour ; 15(4): 737-46, 2015 Jul.
Article En | MEDLINE | ID: mdl-25388775

Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark-recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark-recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve 'Les Nouragues' in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution.


Anura/growth & development , Computational Biology/methods , Genotyping Techniques/methods , Life Cycle Stages , Microsatellite Repeats , Animals , DNA Fingerprinting/methods , French Guiana
10.
J Maps ; 12(1): 26-32, 2014 Oct 28.
Article En | MEDLINE | ID: mdl-27053943

For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals' spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area.

11.
Ethology ; 119(9): 762-768, 2013 Sep 01.
Article En | MEDLINE | ID: mdl-25104869

Dendrobatidae (dart-poison frogs) exhibit some of the most complex spatial behaviors among amphibians, such as territoriality and tadpole transport from terrestrial clutches to widely distributed deposition sites. In species that exhibit long-term territoriality, high homing performance after tadpole transport can be assumed, but experimental evidence is lacking, and the underlying orientation mechanisms are unknown. We conducted a field translocation experiment to test whether male Allobates femoralis, a dendrobatid frog with paternal extra-territorial tadpole transport, are capable of homing after experimental removal, as well as to quantify homing success and speed. Translocated individuals showed a very high homing success for distances up to 200 m and successfully returned from up to 400 m. We discuss the potential orientation mechanisms involved and selective forces that could have shaped this strong homing ability.

...