Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Commun Biol ; 6(1): 708, 2023 07 11.
Article En | MEDLINE | ID: mdl-37433855

Survival response of the human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb) to a diverse environmental cues is governed through its versatile transcription regulatory mechanisms with the help of a large pool of transcription regulators (TRs). Rv1830 is one such conserved TR, which remains uncharacterized in Mtb. It was named as McdR based on an effect on cell division upon its overexpression in Mycobacterium smegmatis. Recently, it has been implicated in antibiotic resilience in Mtb and reannotated as ResR. While Rv1830 affects cell division by modulating the expression of M. smegmatis whiB2, the underlying cause of its essentiality and regulation of drug resilience in Mtb is yet to be deciphered. Here we show that ResR/McdR, encoded by ERDMAN_2020 in virulent Mtb Erdman, is pivotal for bacterial proliferation and crucial metabolic activities. Importantly, ResR/McdR directly regulates ribosomal gene expression and protein synthesis, requiring distinct disordered N-terminal sequence. Compared to control, bacteria depleted with resR/mcdR exhibit delayed recovery post-antibiotic treatment. A similar effect upon knockdown of rplN operon genes further implicates ResR/McdR-regulated protein translation machinery in attributing drug resilience in Mtb. Overall, findings from this study suggest that chemical inhibitors of ResR/McdR may be proven effective as adjunctive therapy for shortening the duration of TB treatment.


Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Protein Biosynthesis , Ribosomes , Anti-Bacterial Agents , Cell Division
2.
Microbiol Spectr ; 11(3): e0031223, 2023 06 15.
Article En | MEDLINE | ID: mdl-37022172

Protein folding is a crucial process in maintaining protein homeostasis, also known as proteostasis, in the cell. The requirement for the assistance of molecular chaperones in the appropriate folding of several proteins has already called into question the previously held view of spontaneous protein folding. These chaperones are highly ubiquitous cellular proteins, which not only help in mediating the proper folding of other nascent polypeptides but are also involved in refolding of the misfolded or the aggregated proteins. Hsp90 family proteins such as high-temperature protein G (HtpG) are abundant and ubiquitously expressed in both eukaryotic and prokaryotic cells. Although HtpG is known as an ATP-dependent chaperone protein in most organisms, function of this protein remains obscured in mycobacterial pathogens. Here, we aim to investigate significance of HtpG as a chaperone in the physiology of Mycobacterium tuberculosis. We report that M. tuberculosis HtpG (mHtpG) is a metal-dependent ATPase which exhibits chaperonin activity towards denatured proteins in coordination with the DnaK/DnaJ/GrpE chaperone system via direct association with DnaJ2. Increased expression of DnaJ1, DnaJ2, ClpX, and ClpC1 in a ΔhtpG mutant strain further suggests cooperativity of mHtpG with various chaperones and proteostasis machinery in M. tuberculosis. IMPORTANCE M. tuberculosis is exposed to variety of extracellular stressful conditions and has evolved mechanisms to endure and adapt to the adverse conditions for survival. mHtpG, despite being dispensable for M. tuberculosis growth under in vitro conditions, exhibits a strong and direct association with DnaJ2 cochaperone and assists the mycobacterial DnaK/DnaJ/GrpE (KJE) chaperone system. These findings suggest the potential role of mHtpG in stress management of the pathogen. Mycobacterial chaperones are responsible for folding of nascent protein as well as reactivation of protein aggregates. M. tuberculosis shows differential adaptive response subject to the availability of mHtpG. While its presence facilitates improved protein refolding via stimulation of the KJE chaperone activity, in the absence of mHtpG, M. tuberculosis enhances expression of DnaJ1/J2 cochaperones as well as Clp protease machinery for maintenance of proteostasis. Overall, this study provides a framework for future investigation to better decipher the mycobacterial proteostasis network in the light of stress adaptability and/or survival.


Escherichia coli Proteins , Mycobacterium tuberculosis , Tuberculosis , Humans , Heat-Shock Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , HSP70 Heat-Shock Proteins , HSP40 Heat-Shock Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
3.
J Proteome Res ; 20(9): 4415-4426, 2021 09 03.
Article En | MEDLINE | ID: mdl-34343006

Persisters are a subpopulation of bacteria that resist killing by antibiotics, even though they are genetically similar to their drug-susceptible counterpart. Like in several other bacteria, persisters are also reported in the human pathogen Mycobacterium tuberculosis (Mtb). Stochastic formation of Mtb persisters with a high level of antimicrobial tolerance set the stage for subsequent multidrug-resistant mutations. Despite significant advancement in our understanding, much remains to be learnt about the biology of this drug-recalcitrant bacterial subpopulation. Most of the information pertaining to the metabolic evolution required for emergence of drug tolerance in tuberculosis (TB) pathogens has come from transcriptional, metabolomic, and mutagenesis studies. Since proteins are the key functional molecules regulating the majority of metabolic activities in the cell, investigation of the whole-cell protein expression profile will further provide valuable insights into the physiology of Mtb persisters. We performed a quantitative proteomic analysis of Mtb H37Rv cultured under an in vitro persistence model to identify the proteomic profile of the phenotypic drug-tolerant bacterial population. Our study reveals that proteins related to intermediary metabolism and respiration, cell-wall and cell processes, lipid metabolism, information pathways, and virulence, detoxification and adaptation functional categories are primarily modulated in the persister subpopulation. Further, we demonstrate that various surface-localized mycobacterial membrane protein large (MmpL) proteins, which exhibit a high level of expression in Mtb persisters, are crucial for the mycobacterial survival during persistent growth state. A drug-induced persister subpopulation of Mtb exhibit various differentially regulated proteins that might be critical in mitigating the antimicrobial effect of drugs and can be further explored to develop novel anti-TB agents. The peptide identifications and tandem mass spectra (MS/MS) have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013621.


Mycobacterium tuberculosis , Pharmaceutical Preparations , Antitubercular Agents/pharmacology , Humans , Proteomics , Tandem Mass Spectrometry
...