Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 71, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486337

RESUMEN

Recent advances in microscopy have enabled studying chromosome organization at the single-molecule level, yet little is known about inherited chromosome organization. Here we adapt single-molecule chromosome tracing to distinguish two C. elegans strains (N2 and HI) and find that while their organization is similar, the N2 chromosome influences the folding parameters of the HI chromosome, in particular the step size, across generations. Furthermore, homologous chromosomes overlap frequently, but alignment between homologous regions is rare, suggesting that transvection is unlikely. We present a powerful tool to investigate chromosome architecture and to track the parent of origin.


Asunto(s)
Caenorhabditis elegans , Cromosomas , Animales , Hibridación Fluorescente in Situ , Caenorhabditis elegans/genética , Cromosomas/genética , ADN/genética
2.
PLoS Biol ; 22(3): e3002526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427703

RESUMEN

Live imaging of RNA molecules constitutes an invaluable means to track the dynamics of mRNAs, but live imaging in Caenorhabditis elegans has been difficult to achieve. Endogenous transcripts have been observed in nuclei, but endogenous mRNAs have not been detected in the cytoplasm, and functional mRNAs have not been generated. Here, we have adapted live imaging methods to visualize mRNA in embryonic cells. We have tagged endogenous transcripts with MS2 hairpins in the 3' untranslated region (UTR) and visualized them after adjusting MS2 Coat Protein (MCP) expression. A reduced number of these transcripts accumulates in the cytoplasm, leading to loss-of-function phenotypes. In addition, during epithelial morphogenesis, MS2-tagged mRNAs for dlg-1 fail to associate with the adherens junction, as observed for untagged, endogenous mRNAs. These defects are reversed by inactivating the nonsense-mediated decay pathway. RNA accumulates in the cytoplasm, mutant phenotypes are rescued, and dlg-1 RNA associates with the adherens junction. These data suggest that MS2 repeats can induce the degradation of endogenous RNAs and alter their cytoplasmic distribution. Although our focus is RNAs expressed in epithelial cells during morphogenesis, we find that this method can be applied to other cell types and stages.


Asunto(s)
Caenorhabditis elegans , ARN , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ARN/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Citosol/metabolismo
3.
Curr Opin Genet Dev ; 75: 101939, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759905

RESUMEN

Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization.


Asunto(s)
Caenorhabditis elegans , Cromatina , Animales , Caenorhabditis elegans/genética , Cromatina/genética , Genoma/genética , Nucleosomas/genética , Regiones Promotoras Genéticas
4.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34846063

RESUMEN

mRNA localization is an evolutionarily widespread phenomenon that can facilitate subcellular protein targeting. Extensive work has focused on mRNA targeting through 'zip-codes' within untranslated regions (UTRs), whereas much less is known about translation-dependent cues. Here, we examine mRNA localization in Caenorhabditis elegans embryonic epithelia. From an smFISH-based survey, we identified mRNAs associated with the cell membrane or cortex, and with apical junctions in a stage- and cell type-specific manner. Mutational analyses for one of these transcripts, dlg-1/discs large, revealed that it relied on a translation-dependent process and did not require its 5' or 3' UTRs. We suggest a model in which dlg-1 transcripts are co-translationally localized with the nascent protein: first the translating complex goes to the cell membrane using sequences located at the C-terminal/3' end, and then apically using N-terminal/5' sequences. These studies identify a translation-based process for mRNA localization within developing epithelia and determine the necessary cis-acting sequences for dlg-1 mRNA targeting.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Desarrollo Embrionario/genética , Guanilato-Quinasas/genética , Biosíntesis de Proteínas/genética , Uniones Adherentes/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Polaridad Celular/genética , Embrión no Mamífero/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Uniones Intercelulares/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , ARN Mensajero/genética , Homología de Secuencia de Aminoácido
5.
Sci Adv ; 7(34)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34417172

RESUMEN

Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)-like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.

6.
STAR Protoc ; 1(3): 100107, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377003

RESUMEN

This protocol describes a high-throughput and multiplexed DNA fluorescence in situ hybridization method to trace chromosome conformation in Caenorhabditis elegans embryos. This approach generates single-cell and single-chromosome localization data that can be used to determine chromosome conformation and assess the heterogeneity of structures that exist in vivo. This strategy is flexible through modifications to the probe design steps to interrogate chromosome structure at the desired genomic scale (small-scale loops to whole-chromosome organization). For complete details on the use and execution of this protocol, please refer to Sawh et al. (2020).


Asunto(s)
Cromosomas/genética , Hibridación Fluorescente in Situ/métodos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN/genética , Cartilla de ADN/genética , Genoma/genética , Genómica/métodos , Conformación Molecular , Análisis de la Célula Individual
7.
Proc Natl Acad Sci U S A ; 117(26): 14636-14641, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541064

RESUMEN

Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.


Asunto(s)
Temperatura Corporal/fisiología , División Celular/fisiología , Desarrollo Embrionario/fisiología , Puntos Cuánticos/química , Termometría , Animales , Caenorhabditis elegans/embriología , Nanodiamantes/química , Termometría/instrumentación , Termometría/métodos
8.
Mol Cell ; 78(1): 96-111.e6, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32105612

RESUMEN

Current models suggest that chromosome domains segregate into either an active (A) or inactive (B) compartment. B-compartment chromatin is physically separated from the A compartment and compacted by the nuclear lamina. To examine these models in the developmental context of C. elegans embryogenesis, we undertook chromosome tracing to map the trajectories of entire autosomes. Early embryonic chromosomes organized into an unconventional barbell-like configuration, with two densely folded B compartments separated by a central A compartment. Upon gastrulation, this conformation matured into conventional A/B compartments. We used unsupervised clustering to uncover subpopulations with differing folding properties and variable positioning of compartment boundaries. These conformations relied on tethering to the lamina to stretch the chromosome; detachment from the lamina compacted, and allowed intermingling between, A/B compartments. These findings reveal the diverse conformations of early embryonic chromosomes and uncover a previously unappreciated role for the lamina in systemic chromosome stretching.


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas/química , Lámina Nuclear/fisiología , Animales , Caenorhabditis elegans/embriología , Cromosomas/ultraestructura , Embrión no Mamífero/ultraestructura , Gastrulación/genética , Hibridación Fluorescente in Situ , Conformación Molecular
9.
Development ; 146(19)2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31540912

RESUMEN

During the first hours of embryogenesis, formation of higher-order heterochromatin coincides with the loss of developmental potential. Here, we examine the relationship between these two events, and we probe the processes that contribute to the timing of their onset. Mutations that disrupt histone H3 lysine 9 (H3K9) methyltransferases reveal that the methyltransferase MET-2 helps terminate developmental plasticity, through mono- and di-methylation of H3K9 (me1/me2), and promotes heterochromatin formation, through H3K9me3. Although loss of H3K9me3 perturbs formation of higher-order heterochromatin, embryos are still able to terminate plasticity, indicating that the two processes can be uncoupled. Methylated H3K9 appears gradually in developing C. elegans embryos and depends on nuclear localization of MET-2. We find that the timing of H3K9me2 and nuclear MET-2 is sensitive to rapid cell cycles, but not to zygotic genome activation or cell counting. These data reveal distinct roles for different H3K9 methylation states in the generation of heterochromatin and loss of developmental plasticity by MET-2, and identify the cell cycle as a crucial parameter of MET-2 regulation.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario , Histonas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Recuento de Células , Embrión no Mamífero/citología , Gastrulación , Heterocromatina/metabolismo , Interfase , Metilación , ARN Polimerasa II/metabolismo , Fase S , Factores de Tiempo , Transcripción Genética
10.
Sci Adv ; 4(8): eaat6224, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30140741

RESUMEN

Heterochromatin formation during early embryogenesis is timed precisely, but how this process is regulated remains elusive. We report the discovery of a histone methyltransferase complex whose nuclear accumulation and activation establish the onset of heterochromatin formation in Caenorhabditis elegans embryos. We find that the inception of heterochromatin generation coincides with the accumulation of the histone H3 lysine 9 (H3K9) methyltransferase MET-2 (SETDB) into nuclear hubs. The absence of MET-2 results in delayed and disturbed heterochromatin formation, whereas accelerated nuclear localization of the methyltransferase leads to precocious H3K9 methylation. We identify two factors that bind to and function with MET-2: LIN-65, which resembles activating transcription factor 7-interacting protein (ATF7IP) and localizes MET-2 into nuclear hubs, and ARLE-14, which is orthologous to adenosine 5'-diphosphate-ribosylation factor-like 14 effector protein (ARL14EP) and promotes stable association of MET-2 with chromatin. These data reveal that nuclear accumulation of MET-2 in conjunction with LIN-65 and ARLE-14 regulates timing of heterochromatin domains during embryogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética
11.
Mol Biol Cell ; 28(15): 2042-2065, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28539408

RESUMEN

To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1 Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure-function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Transactivadores/metabolismo , Uniones Adherentes/metabolismo , Animales , Caenorhabditis elegans , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Sistema Digestivo/crecimiento & desarrollo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Morfogénesis/fisiología , Relación Estructura-Actividad
12.
Curr Opin Genet Dev ; 37: 76-81, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26826681

RESUMEN

Among the diverse transcription factors that are necessary to elicit changes in cell fate, both in embryonic development and in cellular reprogramming, a subset of factors are capable of binding to their target sequences on nucleosomal DNA and initiating regulatory events in silent chromatin. Such 'pioneer transcription factors' initiate cooperative interactions with other regulatory proteins to elicit changes in local chromatin structure. As a consequence of pioneer factor binding, the local chromatin can either become open and competent for activation, closed and repressed, or transcriptionally active. Understanding how pioneer factors initiate chromatin dynamics and how such can be blocked at heterochromatic sites provides insights into controlling cell fate transitions at will.


Asunto(s)
Reprogramación Celular/genética , Cromatina/genética , Nucleosomas/genética , Factores de Transcripción/genética , Diferenciación Celular/genética , Cromatina/química , ADN/química , ADN/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Nucleosomas/química , Unión Proteica
13.
Dev Biol ; 403(1): 5-14, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25773364

RESUMEN

Cell polarity is a fundamental characteristic of epithelial cells. Classical cell biological studies have suggested that establishment and orientation of polarized epithelia depend on outside-in cues that derive from interactions with either neighboring cells or the substratum (Akhtar and Streuli, 2013; Chen and Zhang, 2013; Chung and Andrew, 2008; McNeill et al., 1990; Nejsum and Nelson, 2007; Nelson et al., 2013; Ojakian and Schwimmer, 1994; Wang et al., 1990; Yu et al., 2005). This paradigm has been challenged by examples of epithelia generated in the absence of molecules that mediate cell-cell or cell-matrix interactions, notably E-cadherin and integrins (Baas et al., 2004; Choi et al., 2013; Costa et al., 1998; Harris and Peifer, 2004; Raich et al., 1999; Roote and Zusman, 1995; Vestweber et al., 1985; Williams and Waterston, 1994; Wu et al., 2009). Here we explore an alternative hypothesis, that cadherins and integrins function redundantly to substitute for one another during epithelium formation (Martinez-Rico et al., 2010; Ojakian et al., 2001; Rudkouskaya et al., 2014; Weber et al., 2011). We use C. elegans, which possesses a single E-cadherin (Costa et al., 1998; Hardin et al., 2013; Tepass, 1999) and a single ß-integrin (Gettner et al., 1995; Lee et al., 2001), and analyze the arcade cells, which generate an epithelium late in embryogenesis (Portereiko and Mango, 2001; Portereiko et al., 2004), after most maternal factors are depleted. Loss of E-cadherin(HMR-1) in combination with ß-integrin(PAT-3) had no impact on the onset or formation of the arcade cell epithelium, nor the epidermis or digestive tract. Moreover, ß-integrin(PAT-3) was not enriched at the basal surface of the arcades, and the candidate PAT-3 binding partner ß-laminin(LAM-1) was not detected until after arcade cell polarity was established and exhibited no obvious polarity defect when mutated. Instead, the polarity protein par-6 (Chen and Zhang, 2013; Watts et al., 1996) was required to polarize the arcade cells, and par-6 mutants exhibited mislocalized or absent apical and junctional proteins. We conclude that the arcade cell epithelium polarizes by a PAR-6-mediated pathway that is independent of E-cadherin, ß-integrin and ß-laminin.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Polaridad Celular/fisiología , Cadenas beta de Integrinas/metabolismo , Animales , Cadherinas/genética , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Células Epiteliales/fisiología , Cadenas beta de Integrinas/genética , Laminina/genética , Laminina/metabolismo , Interferencia de ARN , ARN Interferente Pequeño
14.
Biochim Biophys Acta ; 1839(12): 1440-53, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24859459

RESUMEN

Recent studies have discovered phenotypes induced by a transient treatment or mutation that persist for multiple generations without mutations in DNA. Both invertebrates and vertebrates exhibit such inheritance, and a range of environmental factors can act as a trigger. Now referred to as transgenerational epigenetic inheritance or TEI, this emerging field faces a big challenge-what molecular mechanisms account for inheritance of TEI phenotypes? This review describes examples of TEI and focuses on the possible role of histone methylation and small RNAs in mediating TEI.


Asunto(s)
Epigénesis Genética/fisiología , Interacción Gen-Ambiente , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Patrón de Herencia , Animales , Metilación de ADN , Aptitud Genética , Histona Metiltransferasas , Humanos , Patrón de Herencia/genética , Transducción de Señal/genética
15.
PLoS One ; 7(11): e49490, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166684

RESUMEN

The nonsense mediated decay (NMD) pathway degrades mRNAs bearing premature translation termination codons. In mammals, SMG-8 has been implicated in the NMD pathway, in part by its association with SMG-1 kinase. Here we use four independent assays to show that C. elegans smg-8 is not required to degrade nonsense-containing mRNAs. We examine the genetic requirement for smg-8 to destabilize the endogenous, natural NMD targets produced by alternative splicing of rpl-7a and rpl-12. We test smg-8 for degradation of the endogenous, NMD target generated by unc-54(r293), which lacks a normal polyadenylation site. We probe the effect of smg-8 on the exogenous NMD target produced by myo-3::GFP, which carries a long 3' untranslated region that destabilizes mRNAs. None of these known NMD targets is influenced by smg-8 mutations. In addition, smg-8 animals lack classical Smg mutant phenotypes such as a reduced brood size or abnormal vulva. We conclude that smg-8 is unlikely to encode a component critical for NMD.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Orden Génico , Genes Reporteros , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
17.
Curr Opin Genet Dev ; 21(2): 167-74, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21345665

RESUMEN

The differentiation of pluripotent or totipotent cells into various differentiated cell types is accompanied by a restriction of gene expression patterns, alteration in histone and DNA methylation, and changes in the gross nuclear organization of eu- and heterochromatic domains. Several recent studies have coupled genome-wide mapping of histone modifications with changes in gene expression. Other studies have examined changes in the subnuclear positioning of tissue-specific genes upon transcriptional induction or repression. Here we summarize intriguing correlations of the three phenomena, which suggest that in some cases causal relationships may exist.


Asunto(s)
Linaje de la Célula , Núcleo Celular/genética , Genoma , Animales , Diferenciación Celular , Epigénesis Genética , Marcadores Genéticos , Humanos
18.
PLoS Genet ; 6(8)2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20714352

RESUMEN

Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transactivadores/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Sistema Digestivo/crecimiento & desarrollo , Sistema Digestivo/metabolismo , Especificidad de Órganos , Faringe/crecimiento & desarrollo , Faringe/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/genética
19.
PLoS Genet ; 6(2): e1000848, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20174564

RESUMEN

Transcription factors are key components of regulatory networks that control development, as well as the response to environmental stimuli. We have established an experimental pipeline in Caenorhabditis elegans that permits global identification of the binding sites for transcription factors using chromatin immunoprecipitation and deep sequencing. We describe and validate this strategy, and apply it to the transcription factor PHA-4, which plays critical roles in organ development and other cellular processes. We identified thousands of binding sites for PHA-4 during formation of the embryonic pharynx, and also found a role for this factor during the starvation response. Many binding sites were found to shift dramatically between embryos and starved larvae, from developmentally regulated genes to genes involved in metabolism. These results indicate distinct roles for this regulator in two different biological processes and demonstrate the versatility of transcription factors in mediating diverse biological roles.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Ambiente , Genoma de los Helmintos/genética , Transactivadores/metabolismo , Animales , Sitios de Unión , Proteínas de Caenorhabditis elegans/genética , Inmunoprecipitación de Cromatina , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Inanición , Análisis de Supervivencia , Transactivadores/genética , Factores de Transcripción/metabolismo
20.
Annu Rev Cell Dev Biol ; 25: 597-628, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19575642

RESUMEN

The digestive tracts of many animals are epithelial tubes with specialized compartments to break down food, remove wastes, combat infection, and signal nutrient availability. C. elegans possesses a linear, epithelial gut tube with foregut, midgut, and hindgut sections. The simple anatomy belies the developmental complexity that is involved in forming the gut from a pool of heterogeneous precursor cells. Here, I focus on the processes that specify cell fates and control morphogenesis within the embryonic foregut (pharynx) and the developmental roles of the pharynx after birth. Maternally donated factors in the pregastrula embryo converge on pha-4, a FoxA transcription factor that specifies organ identity for pharyngeal precursors. Positive feedback loops between PHA-4 and other transcription factors ensure commitment to pharyngeal fate. Binding-site affinity of PHA-4 for its target promoters contributes to the progression of the pharyngeal precursors towards differentiation. During morphogenesis, the pharyngeal precursors form an epithelial tube in a process that is independent of cadherins, catenins, and integrins but requires the kinesin zen-4/MKLP1. After birth, the pharynx and/or pha-4 are involved in repelling pathogens and controlling aging.


Asunto(s)
Caenorhabditis elegans/embriología , Regulación del Desarrollo de la Expresión Génica , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Digestivo/citología , Sistema Digestivo/embriología , Embrión no Mamífero/metabolismo , Organogénesis , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA