Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
2.
Anal Bioanal Chem ; 415(13): 2493-2509, 2023 May.
Article En | MEDLINE | ID: mdl-36631574

Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS) is one the most powerful analytical platforms for chemical investigations of complex biological samples. It produces large datasets that are rich in information, but highly complex, and its consistency may be affected by random systemic fluctuations and/or changes in the experimental parameters. This study details the optimization of a data processing strategy that compensates for severe 2D pattern misalignments and detector response fluctuations for saliva samples analyzed across 2 years. The strategy was trained on two batches: one with samples from healthy subjects who had undergone dietary intervention with high/low-Maillard reaction products (dataset A), and the second from healthy/unhealthy obese individuals (dataset B). The combined untargeted and targeted pattern recognition algorithm (i.e., UT fingerprinting) was tuned for key process parameters, the signal-to-noise ratio (S/N), and MS spectrum similarity thresholds, and then tested for the best transform function (global or local, affine or low-degree polynomial) for pattern realignment in the temporal domain. Reliable peak detection achieved its best performance, computed as % of false negative/positive matches, with a S/N threshold of 50 and spectral similarity direct match factor (DMF) of 700. Cross-alignment of bi-dimensional (2D) peaks in the temporal domain was fully effective with a supervised operation including multiple centroids (reference peaks) and a match-and-transform strategy using affine functions. Regarding the performance-derived response fluctuations, the most promising strategy for cross-comparative analysis and data fusion included the mass spectral total useful signal (MSTUS) approach followed by Z-score normalization on the resulting matrix.


Metabolome , Saliva , Humans , Gas Chromatography-Mass Spectrometry/methods , Algorithms
3.
J Hum Evol ; 175: 103305, 2023 02.
Article En | MEDLINE | ID: mdl-36586354

Herbivorous animals that regularly consume tannin-rich food are known to secrete certain tannin-binding salivary proteins (TBSPs), especially proline-rich proteins and histidine-rich proteins, as an effective measure to counteract the antinutritive effects of dietary tannins. Due to their high binding capacity, TBSPs complex with tannins in the oral cavity, and thereby protect dietary proteins and digestive enzymes. Although the natural diet of great apes (Hominidae) is biased toward ripe fruits, analyses of food plants revealed that their natural diet contains considerable amounts of tannins, which is raising the question of possible counter-measures to cope with dietary tannins. In our study, we investigated the salivary amino acid profiles of zoo-housed Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii, and compared their results with corresponding data from Homo sapiens. Individual saliva samples of 42 apes and 17 humans were collected and quantitated by amino acid analysis, using cation-exchange chromatography with postcolumn derivatization, following acid hydrolysis. We found species-specific differences in the salivary amino acid profiles with average total salivary protein concentration ranging from 308.8 mg/dL in Po. abelii to 1165.6 mg/dL in G. gorilla. Total salivary protein was consistently higher in ape than in human saliva samples (174 mg/dL). All apes had on average also higher relative proline levels than humans did. Histidine levels had the highest concentration in the samples from Po. abelii followed by P. paniscus. In all ape species, the high salivary concentrations of proline and histidine are considered to be indicative of high concentrations of TBSPs in hominids. Given that the species differences in salivary composition obtained in this study correspond with overall patterns of secondary compound content in the diet of wild populations, we assume that salivary composition is resilient to acute and long-lasting changes in diet composition in general and tannin content in particular.


Amino Acids , Gorilla gorilla , Pan paniscus , Pan troglodytes , Pongo abelii , Animals , Humans , Amino Acids/analysis , Gorilla gorilla/metabolism , Histidine/analysis , Pan paniscus/metabolism , Pan troglodytes/metabolism , Pongo abelii/metabolism , Proline/analysis , Saliva/chemistry , Saliva/metabolism , Salivary Proteins and Peptides/analysis , Tannins/analysis , Tannins/metabolism , Diet
4.
Foods ; 11(14)2022 Jul 15.
Article En | MEDLINE | ID: mdl-35885358

Glycation reactions play a key role in post-translational modifications of amino acids in food proteins. Questions have arisen about a possible pathophysiological role of dietary glycation compounds. Several studies assessed the metabolic fate of dietary glycation compounds into blood and urine, but studies about saliva are rare. We investigated here the dietary impact on salivary concentrations of the individual Maillard reaction products (MRPs) N-ε-fructosyllysine, N-ε-carboxymethyllysine (CML), N-ε-carboxyethyllysine (CEL), pyrraline (Pyr), and methylglyoxal-derived hydroimidazolone 1 (MG-H1). Quantitation was performed using stable isotope dilution analysis (LC-MS/MS). We describe here, that a low MRP diet causes a significant lowering of salivary levels of Pyr from 1.9 ± 0.4 ng/mL to below the LOD and MG-H1 from 2.5 ± 1.5 ng/mL to 0.7 ± 1.8 ng/mL. An impact on the salivary protein fraction was not observed. Furthermore, salivary Pyr and MG-H1 levels are modified in a time-dependent manner after a dietary intervention containing 1.2 mg Pyr and 4.7 mg MG-H1. An increase in mean salivary concentrations to 1.4 ng/mL Pyr and 4.2 ng/mL MG-H1 was observed within 30-210 min. In conclusion, saliva may be a useful tool for monitoring glycation compound levels by using Pyr and MG-H1 as biomarkers for intake of heated food.

5.
Oxid Med Cell Longev ; 2021: 9912240, 2021.
Article En | MEDLINE | ID: mdl-34422213

During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.


Apoptosis , Glycation End Products, Advanced/adverse effects , Inflammation/drug therapy , Keratinocytes/pathology , Oxidative Stress/drug effects , Pyrones/adverse effects , Deoxyglucose/adverse effects , Deoxyglucose/analogs & derivatives , Galactose/adverse effects , Galactose/analogs & derivatives , Humans , In Vitro Techniques , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Keratinocytes/drug effects , Keratinocytes/immunology , Keratinocytes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism
6.
Cell Mol Life Sci ; 78(6): 3021-3044, 2021 Mar.
Article En | MEDLINE | ID: mdl-33230565

Arginine deprivation therapy (ADT) is a new metabolic targeting approach with high therapeutic potential for various solid cancers. Combination of ADT with low doses of the natural arginine analog canavanine effectively sensitizes malignant cells to irradiation. However, the molecular mechanisms determining the sensitivity of intrinsically non-auxotrophic cancers to arginine deficiency are still poorly understood. We here show for the first time that arginine deficiency is accompanied by global metabolic changes and protein/membrane breakdown, and results in the induction of specific, more or less pronounced (severe vs. mild) ER stress responses in head and neck squamous cell carcinoma (HNSCC) cells that differ in their intrinsic ADT sensitivity. Combination of ADT with canavanine triggered catastrophic ER stress via the eIF2α-ATF4(GADD34)-CHOP pathway, thereby inducing apoptosis; the same signaling arm was irrelevant in ADT-related radiosensitization. The particular strong supra-additive effect of ADT, canavanine and irradiation in both intrinsically more and less sensitive cancer cells supports the rational of ER stress pathways as novel target for improving multi-modal metabolic anti-cancer therapy.


Canavanine/pharmacology , Endoplasmic Reticulum Stress/drug effects , Radiation Tolerance/drug effects , X-Rays , Activating Transcription Factor 4/antagonists & inhibitors , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Apoptosis/drug effects , Arginine/deficiency , Arginine/metabolism , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation/drug effects , Culture Media/chemistry , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/genetics , Endoribonucleases/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Transcription Factor CHOP/antagonists & inhibitors , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
7.
Nutrients ; 12(9)2020 Aug 19.
Article En | MEDLINE | ID: mdl-32824970

Heat-processed diets contain high amounts of advanced glycation end products (AGEs). Here we explore the impact of an AGE-enriched diet on markers of metabolic and inflammatory disorders as well as on gut microbiota composition and plasma proteins glycosylation pattern. C57BL/6 mice were allocated into control diet (CD, n = 15) and AGE-enriched diet (AGE-D, n = 15) for 22 weeks. AGE-D was prepared replacing casein by methylglyoxal hydroimidazolone-modified casein. AGE-D evoked increased insulin and a significant reduction of GIP/GLP-1 incretins and ghrelin plasma levels, altered glucose tolerance, and impaired insulin signaling transduction in the skeletal muscle. Moreover, AGE-D modified the systemic glycosylation profile, as analyzed by lectin microarray, and increased Nε-carboxymethyllysine immunoreactivity and AGEs receptor levels in ileum and submandibular glands. These effects were associated to increased systemic levels of cytokines and impaired gut microbial composition and homeostasis. Significant correlations were recorded between changes in bacterial population and in incretins and inflammatory markers levels. Overall, our data indicates that chronic exposure to dietary AGEs lead to a significant unbalance in incretins axis, markers of metabolic inflammation, and a reshape of both the intestinal microbiota and plasma protein glycosylation profile, suggesting intriguing pathological mechanisms underlying AGEs-induced metabolic derangements.


Diet , Gastrointestinal Microbiome , Glycation End Products, Advanced/adverse effects , Glycation End Products, Advanced/metabolism , Inflammation/etiology , Inflammation/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Animals , Cytokines/metabolism , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Glycosylation , Inflammation Mediators/metabolism , Insulin/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Signal Transduction
8.
PLoS One ; 14(9): e0220208, 2019.
Article En | MEDLINE | ID: mdl-31532774

In the course of the Maillard reaction, which occurs during heating of food but also under physiological condition, a broad spectrum of reaction products is formed. Among them, the advanced glycation endproducts (AGEs) Nε-carboxymethyllysine (CML), pyrraline (Pyr), methylglyoxal-derived hydroimidazolone 1 (MG-H1) and Nε-carboxyethyllysine (CEL) are the quantitatively dominating compounds during later reaction stages. Those dietary glycation compounds are under discussion as to be associated with chronic inflammation and the pathophysiological consequences of diseases such as diabetes. In the present study, the concentration of individual glycation compounds in saliva was monitored for the first time and related to their dietary uptake. Fasting saliva of 33 metabolically healthy subjects was analyzed with HPLC-MS/MS. The observed levels of individual glycation compounds ranged from 0.5 to 55.2 ng/ml and differed both intra- and interindividually. Patterns did not correlate with subject-related features such as vegetarianism or sports activities, indicating that dietary intake may play an important role. Therefore, six volunteers were asked to eat a raw food diet free of glycation compounds for two days. Within two days, salivary Pyr was lowered from median 1.7 ng/ml to a minimum level below the limit of detection, and MG-H1 decreased from 3.6 to 1.7 ng/ml in in a time-dependent manner after two days. Salivary CML and CEL concentrations were not affected. Therefore, measuring Pyr and MG-H1 in saliva is a suitable diagnostic tool to monitor the dietary intake and metabolic transit of glycation compounds present in heated foods.


Glycation End Products, Advanced/analysis , Saliva/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Glycation End Products, Advanced/metabolism , Humans , Mass Spectrometry , Saliva/metabolism , Tandem Mass Spectrometry
9.
J Biotechnol ; 242: 30-54, 2017 Jan 20.
Article En | MEDLINE | ID: mdl-27932276

Pathological alterations in cell functions are frequently accompanied by metabolic reprogramming including modifications in amino acid metabolism. Amino acid detection is thus integral to the diagnosis of many hereditary metabolic diseases. The development of malignant diseases as metabolic disorders comes along with a complex dysregulation of genetic and epigenetic factors affecting metabolic enzymes. Cancer cells might transiently or permanently become auxotrophic for non-essential or semi-essential amino acids such as asparagine or arginine. Also, transformed cells are often more susceptible to local shortage of essential amino acids such as methionine than normal tissues. This offers new points of attacking unique metabolic features in cancer cells. To better understand these processes, highly sensitive methods for amino acid detection and quantification are required. Our review summarizes the main methodologies for amino acid detection with a particular focus on applications in biomedicine and cancer, provides a historical overview of the methodological pre-requisites in amino acid analytics. We compare classical and modern approaches such as the combination of gas chromatography and liquid chromatography with mass spectrometry (GC-MS/LC-MS). The latter is increasingly applied in clinical routine. We therefore illustrate an LC-MS workflow for analyzing arginine and methionine as well as their precursors and analogs in biological material. Pitfalls during protocol development are discussed, but LC-MS emerges as a reliable and sensitive tool for the detection of amino acids in biological matrices. Quantification is challenging, but of particular interest in cancer research as targeting arginine and methionine turnover in cancer cells represent novel treatment strategies.


Amino Acids/analysis , Neoplasms/diagnosis , Neoplasms/therapy , Amino Acids/metabolism , Animals , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Electrophoresis/methods , Gas Chromatography-Mass Spectrometry/methods , Humans , Mice , Neoplasms/chemistry , Neoplasms/metabolism
10.
Oncotarget ; 7(45): 73292-73308, 2016 Nov 08.
Article En | MEDLINE | ID: mdl-27689335

The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, the efficacy of the proposed combination in the presence of extracellular citrulline, the substrate for arginine synthesis by ASS1, remains to be elucidated, in particular for malignant cells with positive and/or inducible ASS1 as in colorectal cancer (CRC). Here, the physiological citrulline concentration of 0.05 mM was insufficient to overcome cell cycle arrest and radiosensitization triggered by arginine deficiency. Hyperphysiological citrulline (0.4 mM) did not entirely compensate for the absence of arginine and significantly decelerated cell cycling. Similar levels of canavanine-induced apoptosis were detected in the absence of arginine regardless of citrulline supplementation both in 2-D and advanced 3-D assays, while normal colon epithelial cells in organoid/colonosphere culture were unaffected. Notably, canavanine tremendously enhanced radiosensitivity of arginine-starved 3-D CRC spheroids even in the presence of hyperphysiological citrulline. We conclude that the novel combinatorial targeting strategy of metabolic-chemo-radiotherapy has great potential for the treatment of malignancies with inducible ASS1 expression.


Arginine/metabolism , Canavanine/administration & dosage , Citrulline/metabolism , Radiation, Ionizing , Apoptosis/drug effects , Apoptosis/radiation effects , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line, Tumor , Colorectal Neoplasms/metabolism , DNA Methylation/drug effects , DNA Methylation/radiation effects , Gene Expression , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Radiation Tolerance , Spheroids, Cellular , Tumor Cells, Cultured
...