Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Mol Biol Rep ; 51(1): 735, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38874770

BACKGROUND: Pomegranate (Punica granatum L.) is a tropical fruit crop of pharma-nutritional importance. However, it faces farming challenges due to pests and diseases, particularly bacterial blight and wilt. Developing resistant cultivars is crucial for sustainable pomegranate cultivation, and understanding resistance's genetic basis is essential. METHODS AND RESULTS: We used an extensive resistance gene analogues (RGA) prediction tool to identify 958 RGAs, classified into Nucleotide Binding Site-leucine-rich repeat (NBS-LRR) proteins, receptor-like kinases (RLKs), receptor-like proteins (RLPs), Transmembrane coiled-coil (TM-CC), and nine non-canonical RGAs. RGAs were distributed across all eight chromosomes, with chromosome 02 containing the most RGAs (161), and chromosome 08 having the highest density (4.42 RGA/Mb). NBS-LRR genes were predominantly present on chromosomes 08 and 02, whereas RLKs and RLPs were primarily located on chromosomes 04 and 07. Gene ontology analysis revealed that 475 RGAs were associated with defence against various biotic stresses. Using RNAseq, we identified 120 differentially expressed RGAs, with RLKs (74) being prominent among the differentially expressed genes. CONCLUSION: The discovery of these RGAs is a significant step towards breeding pomegranates for pest and disease resistance. The differentially expressed RLKs hold promise for developing resistant cultivars against bacterial blight, thereby contributing to the sustainability of pomegranate cultivation.


Disease Resistance , Plant Diseases , Plant Proteins , Pomegranate , Transcriptome , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Pomegranate/genetics , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Gene Expression Profiling/methods , Xanthomonas/pathogenicity
2.
J Exp Bot ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38557811

Hypoxia occurs when the oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally-induced hypoxia poses significant challenges for metabolically-active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide and reactive nitrogen species (RNS), such as nitric oxide (•NO), nitrogen dioxide (•NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots and hyponastic response. NO and hydrogen peroxide (H2O2) participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the GABA shunt and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge, highlighting the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.

3.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Article En | MEDLINE | ID: mdl-31480617

Nitric oxide (NO) is known to antagonize ethylene by various mechanisms; one of such mechanisms is reducing ethylene levels by competitive action on S-adenosyl-L-methionine (SAM)-a common precursor for both ethylene and polyamines (PAs) biosynthesis. In order to investigate whether this mechanism of SAM pool diversion by NO occur towards PAs biosynthesis in banana, we studied the effect of NO on alterations in the levels of PAs, which in turn modulate ethylene levels during ripening. In response to NO donor sodium nitroprusside (SNP) treatment, all three major PAs viz. putrescine, spermidine and spermine were induced in control as well as ethylene pre-treated banana fruits. However, the gene expression studies in two popular banana varieties of diverse genomes, Nanjanagudu rasabale (NR; AAB genome) and Cavendish (CAV; AAA genome) revealed the downregulation of SAM decarboxylase, an intermediate gene involved in ethylene and PA pathway after the fifth day of NO donor SNP treatment, suggesting that ethylene and PA pathways do not compete for SAM. Interestingly, arginine decarboxylase belonging to arginine-mediated route of PA biosynthesis was upregulated several folds in response to the SNP treatment. These observations revealed that NO induces PAs via l-arginine-mediated route and not via diversion of SAM pool.

4.
Sci Rep ; 9(1): 10097, 2019 07 12.
Article En | MEDLINE | ID: mdl-31300709

Bacterial blight caused by Xanthomonas axonopodis pv. punicae is a major disease of pomegranate. Bacterial blight drastically reduces the yield and quality of fruits, which are critical for pomegranate production. Precise and early diagnosis of bacterial blight is crucial for active surveillance and effective management of the disease. Symptoms based disease diagnostic methods are labor-intensive, time-consuming and may not detect disease on asymptomatic plants. DNA-based disease diagnostics using polymerase chain reaction (PCR) are reliable, precise, accurate and quick. PCR coupled with agarose gel electrophoresis (PCR-AGE), PCR coupled with capillary electrophoresis (PCR-CE) and real-time PCR (qPCR) were applied for the early and accurate diagnosis of bacterial blight in pomegranate. PCR-CE and qPCR were capable of diagnosing bacterial blight 6 to 10 days before symptom appearance, with detection limits of 100 fg and 10 fg of bacterial DNA respectively. However, conventional PCR-AGE detected pathogen at the onset of disease symptoms with a detection limit of 10 pg of bacterial DNA. qPCR detected bacterial blight in orchards that did not show any disease symptoms. Our data demonstrate that qPCR is more sensitive than other PCR methods along with being reliable for early diagnosis.


Plant Diseases/microbiology , Pomegranate/microbiology , Real-Time Polymerase Chain Reaction/methods , Xanthomonas axonopodis/genetics , DNA, Bacterial/genetics , Fruit/microbiology , High-Throughput Screening Assays , Xanthomonas axonopodis/isolation & purification
5.
Plant Signal Behav ; 7(4): 476-83, 2012 Apr.
Article En | MEDLINE | ID: mdl-22499176

Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits.


Ethylenes/metabolism , Fruit/growth & development , Fruit/metabolism , Nitric Oxide/metabolism , Biosynthetic Pathways , Models, Biological , Plant Growth Regulators/metabolism
6.
Plant Sci ; 181(5): 520-6, 2011 Nov.
Article En | MEDLINE | ID: mdl-21893247

In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O(2), is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.


Mitochondria/metabolism , Nitric Oxide/physiology , Plants/metabolism , Cell Hypoxia , Electron Transport , Models, Biological , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Nitrite Reductases/physiology , Oxidation-Reduction , Plant Proteins/metabolism , Plant Proteins/physiology , Signal Transduction
7.
Pest Manag Sci ; 65(7): 737-43, 2009 Jul.
Article En | MEDLINE | ID: mdl-19222022

BACKGROUND: The nature and durability of resistance offered by chitosan and the involvement of nitric oxide (NO) in chitosan-induced defence reactions in pearl millet against downy mildew disease were investigated. RESULTS: It had previously been reported that chitosan seed priming protected pearl millet plants against downy mildew disease. Further elucidation of the mechanism of resistance showed that chitosan seed priming protects the plants systemically. A minimum 4 day time gap is required between the chitosan treatment and pathogen inoculation for maximum resistance development, and it was found to be durable. Chitosan seed priming elevated NO accumulation in pearl millet seedlings, beginning from 2 h post-inoculation, and it was found to be involved in the activation of early defence reactions such as hypersensitive reaction, callose deposition and PR-1 protein expression. Pretreatment with NO scavenger C-PTIO and nitric oxide synthase (NOS) inhibitor L-NAME before pathogen inoculation reduced the disease-protecting ability of chitosan, and defence reactions were also downregulated, which indicated a possible role for NO in chitosan-induced resistance. CONCLUSION: Protection offered by chitosan against pearl millet downy mildew disease is systemic in nature and durable. Chitosan-induced resistance is activated via NO signalling, as defence reactions induced by chitosan were downregulated under NO deficient conditions.


Chitosan/immunology , Immunity, Innate , Nitric Oxide/immunology , Oomycetes/physiology , Pennisetum/immunology , Plant Diseases/immunology , Oomycetes/immunology , Pennisetum/parasitology , Plant Diseases/parasitology
...