Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Clin Immunol ; 257: 109813, 2023 12.
Article En | MEDLINE | ID: mdl-37898412

BACKGROUND: RASGRP1-deficiency results in an immune dysregulation and immunodeficiency that manifest as autoimmunity, lymphoproliferation, lymphopenia, defective T cell function, and increased incidence of Epstein-Bar Virus infections and lymphomas. OBJECTIVE: To investigate the mechanism of autoimmune hemolytic anemia and infections in a male patient of consanguineous parents from Lebanon. METHODS: Genetic diagnosis was obtained using next generation and Sanger sequencing. Protein expression and phosphorylation were determined by immunoblotting. T and B cell development and function were studied by flow cytometry. Cytokine and immunoglobulin secretions were quantified by enzyme-linked immunosorbent assay. RESULTS: The patient suffered from severe lymphopenia especially affecting the T cell compartment. Genetic analysis revealed a homozygous insertion of adenine at position 1396_1397 in RASGRP1 that abolished protein expression and downstream Ras signaling. T cells from the patient showed severe activation defects resulting in uncontrolled Epstein-Bar Virus-induced B cell proliferation. B cells from the patient were normal. CONCLUSION: This report expands the spectrum of mutations in patients with RasGRP1 deficiency, and provides evidence for the important role RasGRP1 plays in the ability of T cells to control Epstein-Bar Virus-induced B cell proliferation. CLINICAL IMPLICATIONS: Following diagnosis, the patient will be maintained on oral valganciclovir and monitored regularly for Epstein-Bar Virus infections to avoid the development of Epstein-Bar Virus- induced B cell lymphoma. He is also candidate for hematopoietic stem cell transplantation.


Epstein-Barr Virus Infections , Immunologic Deficiency Syndromes , Lymphopenia , Humans , Male , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Herpesvirus 4, Human , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , Lymphopenia/complications , Lymphopenia/genetics , Mutation
2.
J Biol Chem ; 299(11): 105303, 2023 11.
Article En | MEDLINE | ID: mdl-37777154

Mitochondrial fission protein 1 (FIS1) is conserved in all eukaryotes, yet its function in metazoans is thought divergent. Structure-based sequence alignments of FIS1 revealed a conserved, but noncanonical, three-residue insert in its first tetratricopeptide repeat (TPR) suggesting a conserved function. In vertebrates, this insert is serine (S45), lysine (K46), and tyrosine (Y47). To determine the biological role of the "SKY insert," three variants were tested in HCT116 cells for altered mitochondrial morphology and recruitment of fission mechanoenzyme DRP1 and mitophagic adaptor TBC1D15. Similar to ectopically expressed wildtype FIS1, substitution of the SKY insert with alanine (AAA) fragmented mitochondria into perinuclear clumps associated with increased mitochondrial DRP1. In contrast, deletion variants (either ∆SKY or ∆SKYD49G) elongated mitochondrial networks with reduced mitochondrial recruitment of DRP1, despite DRP1 coimmunoprecipitates being highly enriched with ΔSKY variants. Ectopic wildtype FIS1 drove co-expressed YFP-TBC1D15 entirely from the cytoplasm to mitochondria as punctate structures concomitant with enhanced mitochondrial DRP1 recruitment. YFP-TBC1D15 co-expressed with the AAA variant further enhanced mitochondrial DRP1 recruitment, indicating a gain of function. In contrast, YFP-TBC1D15 co-expressed with deletion variants impaired mitochondrial DRP1 and YFP-TBC1D15 recruitment; however, mitochondrial fragmentation was restored. These phenotypes were not due to misfolding or poor expression of FIS1 variants, although ∆SKYD49G induced conformational heterogeneity that is lost upon deletion of the regulatory Fis1 arm, indicating SKY-arm interactions. Collectively, these results support a unifying model whereby FIS1 activity is effectively governed by intramolecular interactions between its regulatory arm and a noncanonical TPR insert that is conserved across eukaryotes.


Membrane Proteins , Mitochondrial Dynamics , Animals , Cytoplasm/metabolism , Dynamins/genetics , Dynamins/metabolism , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Humans , Cell Line, Tumor
3.
J Allergy Clin Immunol ; 152(6): 1597-1606, 2023 12.
Article En | MEDLINE | ID: mdl-37595757

BACKGROUND: Inborn errors of immunity are mostly monogenic. However, disease phenotype and outcome may be modified by the coexistence of a second gene defect. OBJECTIVE: We sought to identify the genetic basis of the disease in a patient who experienced bleeding episodes, pancytopenia, hepatosplenomegaly, and recurrent pneumonia that resulted in death. METHODS: Genetic analysis was done using next-generation sequencing. Protein expression and phosphorylation were determined by immunoblotting. T-cell proliferation and F-actin levels were studied by flow cytometry. RESULTS: The patient harbored 2 homozygous deletions in STX11 (c.369_370del, c.374_376del; p.V124fs60∗) previously associated with familial hemophagocytic lymphohistiocytosis and a novel homozygous missense variant in SLP76 (c.767C>T; p.T256I) that resulted in an approximately 85% decrease in SLP76 levels and absent T-cell proliferation. The patient's heterozygous family members showed an approximately 50% decrease in SLP76 levels but normal immune function. SLP76-deficient J14 Jurkat cells did not express SLP76 and had decreased extracellular signal-regulated kinase signaling, basal F-actin levels, and polymerization following T-cell receptor stimulation. Reconstitution of J14 cells with T256I mutant SLP76 resulted in low protein expression and abnormal extracellular signal-regulated kinase phosphorylation and F-actin polymerization after T-cell receptor activation compared with normal expression and J14 function when wild-type SLP76 was introduced. CONCLUSIONS: The hypomorphic mutation in SLP76 tones down the hyperinflammation due to STX11 deletion, resulting in a combined immunodeficiency that overshadows the hemophagocytic lymphohistiocytosis phenotype. To our knowledge, this study represents the first report of the opposing effects of 2 gene defects on the disease in a patient with an inborn error of immunity.


Actins , Lymphohistiocytosis, Hemophagocytic , Humans , Extracellular Signal-Regulated MAP Kinases , Lymphohistiocytosis, Hemophagocytic/genetics , Mutation , Qa-SNARE Proteins/genetics , Receptors, Antigen, T-Cell/genetics , Signal Transduction
4.
J Med Life ; 16(11): 1670-1677, 2023 Nov.
Article En | MEDLINE | ID: mdl-38406782

Previous evidence has shown an association between serum ferritin and bilirubin levels in the development of type 2 diabetes mellitus (T2DM) and glycemic control. However, the evidence is scarce in Saudi Arabia. In this study, we aimed to evaluate the association between serum ferritin and bilirubin levels with glycemic control in patients with T2DM. This was a cross-sectional study that involved 153 patients with T2DM recruited from outpatient diabetes clinics. Participants were categorized into two groups: well-controlled and uncontrolled T2DM, based on their glycemic status. We focused on comparing the iron profile and bilirubin levels between these two groups and examining the influence of antidiabetic medications on these parameters. A total of 153 patients with T2DM were included (58.2% women and 41.8% men). In both univariate and multivariate analyses, ferritin levels did not have a statistically significant association with glycemic control. However, patients with well-controlled T2DM had a significantly higher median level of total bilirubin and direct bilirubin than those with uncontrolled T2DM. Only direct bilirubin showed a statistically significant association with FBG less than 130 mg/dl and HbA1c level less than 7.0%. Ferritin level was not associated with glycemic control in patients with T2DM. On the other hand, direct bilirubin level was an independent predictor of better glycemic control. Monitoring direct bilirubin levels could aid in predicting glycemic control in T2DM and could be a potential target for developing antidiabetic medications.


Diabetes Mellitus, Type 2 , Male , Humans , Female , Bilirubin/therapeutic use , Glycemic Control , Cross-Sectional Studies , Hypoglycemic Agents/therapeutic use , Ferritins/therapeutic use , Blood Glucose
5.
Br J Cancer ; 127(6): 976-987, 2022 10.
Article En | MEDLINE | ID: mdl-35662275

Glioblastoma is the most common and aggressive primary malignant brain tumour. The prognosis of patients with glioblastoma is poor, and their overall survival averages at 1 year, despite advances made in cancer therapy. The emergence of immunotherapy, a strategy that targets the natural mechanisms of immune evasion by cancerous cells, has revolutionised the treatment of melanoma, lung cancer and other solid tumours; however, immunotherapy failed to improve the prognosis of patients with glioblastoma. This is attributed to the fact that glioblastoma is endowed with numerous mechanisms of resistance that include the intrinsic resistance, which refers to the location of the tumour within the brain and the nature of the blood-brain barrier, as well as the adaptive and acquired resistance that result from the tumour heterogeneity and its immunosuppressive microenvironment. Glioblastoma is notorious for its inter and intratumoral heterogeneity, which, coupled with its spatial and temporal evolution, limits its immunogenicity. In addition, the tumour microenvironment is enriched with immunosuppressive cells and molecules that hinder the reactivity of cytotoxic immune cells and the success of immunotherapies. In this article, we review the mechanisms of resistance of glioblastoma to immunotherapy and discuss treatment strategies to overcome them worthy of further exploration.


Brain Neoplasms , Glioblastoma , Brain Neoplasms/therapy , Glioblastoma/therapy , Humans , Immunologic Factors , Immunotherapy , Tumor Microenvironment
6.
Arterioscler Thromb Vasc Biol ; 42(8): 987-1004, 2022 08.
Article En | MEDLINE | ID: mdl-35708031

BACKGROUND: Secretory granules are key elements for platelet functions. Their biogenesis and integrity are regulated by fine-tuned mechanisms that need to be fully characterized. Here, we investigated the role of the phosphoinositide 5-kinase PIKfyve and its lipid products, PtdIns5P (phosphatidylinositol 5 monophosphate) and PtdIns(3,5)P2 (phosphatidylinositol (3,5) bisphosphate) in granule homeostasis in megakaryocytes and platelets. METHODS: For that, we invalidated PIKfyve by pharmacological inhibition or gene silencing in megakaryocytic cell models (human MEG-01 cell line, human imMKCLs, mouse primary megakaryocytes) and in human platelets. RESULTS: We unveiled that PIKfyve expression and its lipid product levels increased with megakaryocytic maturation. In megakaryocytes, PtdIns5P and PtdIns(3,5)P2 were found in alpha and dense granule membranes with higher levels in dense granules. Pharmacological inhibition or knock-down of PIKfyve in megakaryocytes decreased PtdIns5P and PtdIns(3,5)P2 synthesis and induced a vacuolar phenotype with a loss of alpha and dense granule identity. Permeant PtdIns5P and PtdIns(3,5)P2 and the cation channel TRPML (transient receptor potential mucolipin) 1 and TPC (two pore segment channel) 2 activation were able to accelerate alpha and dense granule integrity recovery following release of PIKfyve pharmacological inhibition. In platelets, PIKfyve inhibition specifically impaired the integrity of dense granules culminating in defects in their secretion, platelet aggregation, and thrombus formation. CONCLUSIONS: These data demonstrated that PIKfyve and its lipid products PtdIns5P and PtdIns(3,5)P2 control granule integrity both in megakaryocytes and platelets.


Megakaryocytes , Phosphatidylinositol 3-Kinases , Phosphatidylinositols , Animals , Blood Platelets/metabolism , Cytoplasmic Granules/metabolism , Humans , Megakaryocytes/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism
7.
Front Immunol ; 13: 867837, 2022.
Article En | MEDLINE | ID: mdl-35418989

The interleukin-7 receptor (IL-7R) is expressed on lymphoid cells and plays an important role in the development, homeostasis, survival, and proliferation of T cells. Bi-allelic mutations in the IL-7Rα chain abolish T cell development and function resulting in severe combined immunodeficiency disease. In this manuscript, we investigate a 1 year-old patient born to consanguineous parents, who suffered from autoimmune hemolytic anemia since birth associated with recurrent severe infections. Flow cytometric analysis of the patient's peripheral blood demonstrated elevated numbers of B and NK cells, decreased numbers of T cells, defective thymic output, a predominance of memory T cells, and absent T cell proliferation. Next Generation Sequencing identified a novel homozygous pathogenic mutation in IL7RA (c.379G>A) that resulted in aberrant IL7RA RNA splicing and absent IL-7Rα expression. The patient was successfully transplanted using her HLA-matched relative as donor. One year after transplant, the patient is clinically stable with normal reconstitution of donor T cells that express IL-7Rα, a significant increase in the percentages of recent thymic emigrant and peripheral T cells, normalization of naïve and memory T cells, and restoration of her T cell's proliferative response. Therefore, using genetic and functional approaches, we identified a novel deleterious mutation in IL-7Rα that results in T-B+NK+ phenotype, and report successful hematopoietic stem cell transplantation of the patient. This represents the first bedside-to-bench-and-back case entirely performed on a patient with severe combined immunodeficiency at the American University of Beirut Medical Center.


Receptors, Interleukin-7 , Severe Combined Immunodeficiency , Female , Humans , Infant , Killer Cells, Natural , Mutation , Receptors, Interleukin-7/genetics , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy
8.
Front Genet ; 12: 749792, 2021.
Article En | MEDLINE | ID: mdl-34987545

Neurodegenerative diseases (NDDs) are challenging to understand, diagnose, and treat. Revealing the genomic and transcriptomic changes in NDDs contributes greatly to the understanding of the diseases, their causes, and development. Moreover, it enables more precise genetic diagnosis and novel drug target identification that could potentially treat the diseases or at least ease the symptoms. In this study, we analyzed the transcriptional changes of nuclear-encoded mitochondrial (NEM) genes in eight NDDs to specifically address the association of these genes with the diseases. Previous studies show strong links between defects in NEM genes and neurodegeneration, yet connecting specific genes with NDDs is not well studied. Friedreich's ataxia (FRDA) is an NDD that cannot be treated effectively; therefore, we focused first on FRDA and compared the outcome with seven other NDDs, including Alzheimer's disease, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, frontotemporal dementia, Huntington's disease, multiple sclerosis, and Parkinson's disease. First, weighted correlation network analysis was performed on an FRDA RNA-Seq data set, focusing only on NEM genes. We then carried out differential gene expression analysis and pathway enrichment analysis to pinpoint differentially expressed genes that are potentially associated with one or more of the analyzed NDDs. Our findings propose a strong link between NEM genes and NDDs and suggest that our identified candidate genes can be potentially used as diagnostic markers and therapeutic targets.

9.
Clin Immunol ; 219: 108573, 2020 10.
Article En | MEDLINE | ID: mdl-32814211

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency disorder (PID) characterized by microthrombocytopenia, bloody diarrhea, eczema, recurrent infections, and a high incidence of autoimmunity and malignancy. OBJECTIVE: To investigate the mechanism of thrombocytopenia and infections in four boys of consanguineous parents from Lebanon. METHODS: Patient gDNA was studied using Next Generation Sequencing and Sanger Sequencing. Protein expression was determined by immunoblotting, and mRNA expression by semi-quantitative RT-PCR. F-actin polymerization and cellular proliferation were assayed by flow cytometry. RESULTS: We identified a threonine to a methionine change at position 45 (T45M) of the WAS protein (WASp) that abolished protein expression and disturbed F-actin polymerization and T cell proliferation, but not B cell proliferation. In addition, the levels of the WAS-interacting protein (WIP) were significantly decreased in the patients. CONCLUSION: The mutation identified severely destabilizes WASp and affects the downstream signaling events important for T cell function, but not B cell function. It was previously known that the stability of WASp depends on WIP. In this manuscript, we report that the stability of WIP also depends on WASp. Finally, it is important to suspect X-linked PIDs even in consanguineous families. CLINICAL IMPLICATIONS: The patients are above the optimal age for transplant in WAS, and it is difficult to identify one or more donors for four patients, therefore, they represent ideal candidates for gene therapy or interleukin-2 therapy.


Wiskott-Aldrich Syndrome Protein/genetics , Wiskott-Aldrich Syndrome/genetics , X-Linked Combined Immunodeficiency Diseases/genetics , B-Lymphocytes/immunology , Child , Child, Preschool , Consanguinity , Humans , Lebanon , Male , Mutation , Siblings , T-Lymphocytes/immunology , Wiskott-Aldrich Syndrome/immunology , X-Linked Combined Immunodeficiency Diseases/immunology
10.
Biochem Biophys Res Commun ; 476(3): 167-73, 2016 07 29.
Article En | MEDLINE | ID: mdl-27155155

Phosphoinositides play a key role in the spatiotemporal control of central intracellular processes and several specific kinases and phosphatases regulating the level of these lipids are implicated in human diseases. Myotubularins are a family of 3-phosphatases acting specifically on phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5 bisphosphate. Members of this family are mutated in genetic diseases including myotubularin 1 (MTM1) and myotubularin-related protein 2 (MTMR2) which mutations are responsible of X-linked centronuclear myopathy and Charcot-Marie-Tooth neuropathy, respectively. Here we show that MTM1 is expressed in blood platelets and that hundred microliters of blood is sufficient to detect the protein by western blotting. Since the most severe cases of pathogenic mutations of MTM1 lead to loss of expression of the protein, we propose that a minimal amount of blood can allow a rapid diagnostic test of X-linked myotubular myopathy, which is currently based on histopathology of muscle biopsy and molecular genetic testing. In platelets, MTM1 is a highly active 3-phosphatase mainly associated to membranes and found on the dense granules and to a lesser extent on alpha-granules. However, deletion of MTM1 in mouse had no significant effect on platelet count and on platelet secretion and aggregation induced by thrombin or collagen stimulation. Potential compensation by other members of the myotubularin family is conceivable since MTMR2 was easily detectable by western blotting and the mRNA of several members of the family increased during in vitro differentiation of human megakaryocytes and MEG-01 cells. In conclusion, we show the presence of several myotubularins in platelets and propose that minimal amounts of blood can be used to develop a rapid diagnostic test for genetic pathologies linked to loss of expression of these phosphatases.


Blood Platelets/pathology , Myopathies, Structural, Congenital/diagnosis , Protein Tyrosine Phosphatases, Non-Receptor/analysis , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Line , Gene Expression Regulation , Humans , Mice, Inbred C57BL , Mice, Knockout , Myopathies, Structural, Congenital/blood , Myopathies, Structural, Congenital/genetics , Platelet Aggregation , Protein Tyrosine Phosphatases, Non-Receptor/blood , Protein Tyrosine Phosphatases, Non-Receptor/genetics , RNA, Messenger/genetics
11.
Biochimie ; 125: 250-8, 2016 Jun.
Article En | MEDLINE | ID: mdl-26391221

By interacting specifically with proteins, phosphoinositides organize the spatiotemporal formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking and cytoskeleton dynamics. A set of specific kinases and phosphatases ensures the production, degradation and inter-conversion of phosphoinositides to achieve a high level of precision in the regulation of cellular dynamics coordinated by these lipids. The direct involvement of these enzymes in cancer, genetic or infectious diseases, and the recent arrival of inhibitors targeting specific phosphoinositide kinases in clinic, emphasize the importance of these lipids and their metabolism in the biomedical field.


1-Phosphatidylinositol 4-Kinase/metabolism , Phosphatidylinositols/metabolism , Signal Transduction , 1-Phosphatidylinositol 4-Kinase/genetics , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Humans , Infections/genetics , Infections/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Phosphatidylinositols/genetics
12.
J Cell Sci ; 128(4): 815-27, 2015 Feb 15.
Article En | MEDLINE | ID: mdl-25588840

Phosphoinositides represent a major class of lipids specifically involved in the organization of signaling cascades, maintenance of the identity of organelles and regulation of multiple intracellular trafficking steps. We previously reported that phosphatidylinositol 5-monophosphate (PI5P), produced by the Shigella flexneri phosphatase IpgD, is implicated in the endosomal sorting of the epidermal growth factor receptor (EGFR). Here, we show that the adaptor protein TOM1 is a new direct binding partner of PI5P. We identify the domain of TOM1 involved in this interaction and characterize the binding motif. Finally, we demonstrate that the recruitment of TOM1 by PI5P on signaling endosomes is responsible for the delay in EGFR degradation and fluid-phase bulk endocytosis. Taken together, our data strongly suggest that PI5P enrichment in signaling endosomes prevents endosomal maturation through the recruitment of TOM1, and point to a new function of PI5P in regulating discrete maturation steps in the endosomal system.


Endosomes/metabolism , ErbB Receptors/metabolism , Phosphatidylinositol Phosphates/metabolism , Proteins/metabolism , Animals , Binding Sites , Cell Line , Cloning, Molecular , Cricetinae , Endocytosis/genetics , Endocytosis/physiology , Fibroblasts , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Protein Transport , Proteins/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction
...