Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 167
1.
Article En | MEDLINE | ID: mdl-38584530

BACKGROUND: Doxorubicin (DOX) is a chemotherapy drug that is widely used in cancer therapy, especially in Triple-Negative Breast Cancer (TNBC) patients. Nevertheless, cytoprotective autophagy induction by DOX limits its cytotoxic effect and drug resistance induction in patients. Therefore, finding a new way is essential for increasing the effectiveness of this drug for cancer treatment. OBJECTIVE: This study aimed to investigate the effect of L-lysine on DOX cytotoxicity, probably through autophagy modulation in TNBC cell lines. METHODS: We used two TNBC cell lines, MDA-MB-231 and MDA-MB-468, with various levels of autophagy activity. Cell viability after treatment with L-lysine alone and in combination therapy was evaluated by MTT assay. Reactive Oxygen Species (ROS), nitric oxide (NO) concentration, and arginase activity were assessed using flow cytometric analysis, Griess reaction, and arginase activity assay kit, respectively. Real-time PCR and western blot analysis were used to evaluate the L-lysine effect on the autophagy-related genes and protein expression. Cell cycle profile and apoptotic assay were performed using flow cytometric analysis. RESULTS: The obtained data indicated that L-lysine in both concentrations of 24 and 32 mM increased the autophagy flux and enhanced the DOX cytotoxicity, especially in MDA-MB-231, which demonstrated higher autophagy activity than MDA-MB-468, by inducing ROS and NO production. Furthermore, L-lysine induced G2/M arrest autophagy cell death, while significant apoptotic changes were not observed. CONCLUSION: These findings suggest that L-lysine can increase DOX cytotoxicity through autophagy modulation. Thus, L-lysine, in combination with DOX, may facilitate the development of novel adjunct therapy for cancer.

2.
Heliyon ; 10(6): e27373, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38515718

Background: COVID-19 now is a serious concern for the world healthcare system. This study aimed to investigate possible therapeutic effect of colchicine and phenolic monoterpenes accompanied by standard care of treatment (SCT) in patients diagnosed with COVID-19. Methods: In this randomized controlled parallel clinical trial, a total number of 179 (of 200) patients with confirmed COVID-19 were enrolled according to the inclusion and exclusion criteria. The patients were allocated by simple randomization method into two groups control (receiving SCT with 71 patients) and intervention (receiving SCT plus colchicine and phenolic monoterpenes with 107 patients). The mortality ratio during hospitalization as well as a 2-week follow-up, ICU admission rate, and hospitalization duration were assessed as main outcomes. Results: The mortality ratio was 0.9% (1/108) and 8.45% (6/71) in the intervention and the control groups (p-value = 0.035) respectively, these ratios after a 14-day follow-up were 1.85% (2/108), and 9.85 (7/71) respectively (p-value = 0.031). Also, the ICU admission was significantly lower (p-value = 0.006) in the intervention group 2/108 (1.85%) compared with controls 10/71 (14.08%). Moreover, the duration of hospitalization followed a similar pattern to ICU admission with 4.17 ± 1.34 vs. 6.39 ± 2.59 days in the intervention and control groups respectively (p-value< 0.001). Furthermore, no significant side effect was found between the groups. Conclusion: According to the results, the combination of colchicine plus phenolic monoterpenes could be an additive treatment for the SCT. The authors strongly recommend further trials on this combination with other SCTs.

3.
Mol Biol Rep ; 51(1): 443, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520545

Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.


Carcinoma, Renal Cell , Exosomes , Extracellular Vesicles , Kidney Neoplasms , Mesenchymal Stem Cells , Humans , Carcinoma, Renal Cell/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Kidney Neoplasms/metabolism
4.
Eur J Pharm Sci ; 196: 106715, 2024 May 01.
Article En | MEDLINE | ID: mdl-38301971

Over the recent decades, stem cell-based therapies have been considered as a beneficial approach for the treatment of various diseases. In these types of therapies, the stem cells and their products are used as treating agents. Despite the helpful efficacy of stem cell-based therapies, there may be challenges. Oxidative stress (OS) is one of these challenges that can affect the therapeutic properties of stem cells. Therefore, it seems that employing strategies for the reduction of OS in combination with stem cell therapy can lead to better results of these therapies. Based on the available evidence, antioxidant therapy and photobiomodulation (PBM) are strategies that can regulate the OS in the cells. Antioxidant therapy is a method in which various antioxidants are used in the therapeutic processes. PBM is also the clinical application of light that gained importance in medicine. Antioxidants and PBM can regulate OS by the effect on mitochondria as an important source of OS in the cells. Considering the importance of OS in pathologic pathways and its effect on the treatment outcomes of stem cells, in the present review first the stem cell therapy and effects of OS on this type of therapy are summarized. Then, antioxidant therapy and PBM as approaches for reducing OS with a focus on mitochondrial function are discussed. Also, a novel combination treatment with the hope of achieving better and more stable outcomes in the treatment process of diseases is proposed.

5.
Birth Defects Res ; 116(2): e2315, 2024 Feb.
Article En | MEDLINE | ID: mdl-38348645

BACKGROUND AND AIM: Chemotherapy, particularly with methotrexate (MTX), often elicits testicular toxicity, leading to impaired spermatogenesis and hormone imbalances. This study aimed to investigate the potential protective effects of selenium (Se) against MTX-induced testicular injury. MATERIALS AND METHODS: Male mice were divided into control, MTX, Se, and MTX + Se groups. Histopathological examination involved the preparation of testicular tissue sections using the Johnsen's tubular biopsy score (JTBS) for spermatogenesis evaluation. Biochemical tests included the assessment of testosterone, malondialdehyde (MDA), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to analyze the expression of caspase 3 (casp3), tumor protein 53 (p53), B-cell lymphoma 2 (Bcl2), and Bcl2-associated X protein (Bax) genes. Statistical analysis was performed using ANOVA and Tukey's tests (p < .05). RESULTS: Histopathological analysis revealed significant testicular damage in the MTX group, with decreased spermatogenesis and Leydig cell count, while Se administration mitigated these effects, preserving the structural integrity of the reproductive epithelium. Biochemical analysis demonstrated that MTX led to elevated malondialdehyde (MDA) levels and reduced testosterone, LH, and FSH levels, suggesting oxidative stress and Leydig cell dysfunction. Gene expression analysis indicated that MTX upregulated proapoptotic genes (casp3, p53, and bax) while downregulating the antiapoptotic Bcl2 gene. In contrast, Se treatment reversed these trends, highlighting its potential antiapoptotic properties. CONCLUSION: Our findings underscore the potential of Se as a therapeutic agent to mitigate the reproductive toxicity associated with MTX-induced testicular injury. Se exerts protective effects by regulating oxidative stress, preserving hormone balance, and modulating apoptotic pathways. These results suggest that Se supplementation could be a promising strategy to alleviate chemotherapy-induced testicular damage and preserve male fertility.


Methotrexate , Selenium , Male , Mice , Animals , Methotrexate/adverse effects , Selenium/pharmacology , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53 , Testosterone , Luteinizing Hormone/metabolism , Malondialdehyde/metabolism , Follicle Stimulating Hormone
6.
J Mater Chem B ; 12(1): 176-186, 2023 12 22.
Article En | MEDLINE | ID: mdl-38055010

In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 µm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.


Metal Nanoparticles , Oxygen , Capsules , Drug Liberation , Gold , Hydrogen Peroxide , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Carriers
7.
Cell J ; 25(11): 741-752, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38071406

OBJECTIVE: Mitochondrial oxidative stress is an important factor in infertility. The mitochondrial thioredoxin system plays an important role in this condition. N-acetyl-5-methoxy tryptamine (melatonin) plays a role in reducing oxidative stress and apoptosis in spermatogonial stem cells (SSCs). In this study, we explore the probable protective effects of melatonin on the mitochondrial thioredoxin system [thioredoxin 2 (Trx2)/Txnip] in SSCs under oxidative stress. MATERIALS AND METHODS: In this experimental study, SSCs were co-cultured two-dimensionally (2D) with Sertoli cells in DMEM culture medium that contained 10% fetal bovine serum (FBS), 1% antibiotics, and 10 ng/ml glial cell-derived neurotrophic factor (GDNF) for 30 days. The cultured cells were subsequently divided into four groups: control; melatonin (250 µM, 24 hours); melatonin (250 µM, 24 hours)+hydrogen peroxide (H2O2, 50 µM, 24 hours); and H2O2 (50 µM, 24 hours). Intracellular reactive oxygen species (ROS) production was determined by flow cytometry. Malondialdehyde (MDA) levels were measured by Fluorometry. The expressions of apoptotic and antioxidant genes and nuclear factor erythroid 2-related factor 2 (Nrf2), Trx2, and nicotinamide nucleotide transhydrogenase (NNT) proteins were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Adenosine triphosphate (ATP) levels were measured by fluorometry. RESULTS: Melatonin reduced H2O2-induced ROS levels and apoptosis in the SSCs. Melatonin also increased mRNA expression of Nrf2, Trx2, NNT, Sirtuin 3 (Sirt3), and decreased mRNA expression of Txnip, and increased protein expressions of Nrf2, Trx2, NNT thereby increasing activity of the mitochondrial thioredoxin system. In addition, melatonin increased ATP levels. CONCLUSION: Melatonin increased Trx2 expression through the Nrf2 pathway. This study suggests that melatonin may protect SSCs from oxidative stress in diseases related to infertility.

8.
Respir Med Case Rep ; 46: 101923, 2023.
Article En | MEDLINE | ID: mdl-37928415

Background: Interstitial lung disease (ILD) is a severe systemic sclerosis (SSc) complication with no current approved or golden standard treatment. This report aims to investigate the effectiveness of treatment with placental mesenchymal stromal cell (MSC) extracellular vesicles (EVs) in a patient with ILD due to SSc. Case presentation: The patient was a 55-year-old woman with a ten years history of SSc complicated by severe ILD. Over time, her lung disease progressed to interstitial fibrosis despite being treated with mycophenolate mofetil and monthly pulses of cyclophosphamide. Thus, she was treated with eight doses of placenta MSC-EVs. Four weeks after the third dose (Day 31 after the first dose), she reported marked improvement in her clinical symptoms, such as dyspnea and cough. Also, chest computed tomography (CT) scans demonstrated a significant reduction in ground glass consolidations and fibrotic changes. The patient was subsequently followed for twelve months, with findings showing significant improvement in exercise tolerance and reduced supplemental oxygen need. Conclusion: In this single case, placental MSC-EVs were seen to provide a potentially efficient treatment for SSc-related ILD; however, further investigation and clinical trials are necessary.

9.
Iran J Basic Med Sci ; 26(9): 1041-1046, 2023.
Article En | MEDLINE | ID: mdl-37605723

Objectives: This study examined the effects of melatonin treatment on steroidogenesis dysfunction and testosterone impairment, following CoCl2-induced hypoxia in TM3 Leydig cells. Materials and Methods: The TM3 cells were divided into four groups. The first group received no treatment. The MLT group was treated with a concentration of 1 mM melatonin. In the CoCl2 group, 0.2 mM CoCl2 was added to the medium to induce Hif1α overexpression. The MLT+CoCl2 group received 0.2 mM CoCl2 and 1 mM melatonin. After 24 hr treatment, the cells and supernatants were collected and used for further determination. The MTT assay was performed to estimate the decrease in cell viability throughout the CoCl2 and melatonin treatment. The mRNA and the protein levels were evaluated using Real-time PCR and Western blot analysis. The ELISA assay kit was used to detect the testosterone content. Results: CoCl2 treatment caused Hif1α overexpression in TM3 Leydig cells. Moreover, CoCl2 treatment of these cells led to considerable downregulation of Star, Hsd3b1, and Gata4 well as Mtnr1a and Mtnr1b mRNA/protein expression coupled with testosterone content repression in the cell culture medium. Melatonin administration in cells treated with CoCl2, decreased Hif1α mRNA/protein expression, but had no significant effect on Star, Hsd3b1, Gata4, Mtnr1a mRNA/protein expression, and the testosterone level in the cell culture medium. Melatonin caused recovery of decrease in the Mtnr1b gene and protein expression. Conclusion: There was no significant effect on steroidogenesis-related genes, proteins, and testosterone synthesis in the absence of gonadotropin treatment plus melatonin following CoCl2-induced hypoxia in TM3 Leydig cells.

10.
Int Immunopharmacol ; 120: 110273, 2023 Jul.
Article En | MEDLINE | ID: mdl-37192554

Post refractive corneal ulcers is a disastrous complication, can affect healthy individuals, is cumbersome to treat, and sometimes has a poor prognosis with corneal scarring. Accurate diagnosis and prompt treatment of corneal infection is very important; however, until now, there has been no specific protocol for the management of this common eye disease and severe cases may require a corneal transplant. The patient is a 42-year-old male who suffered a corneal ulcer after photo refractive keratectomy (PRK) surgery in which the cornea was completely destroyed. None of the routine treatments were effective and, due to the progression of corneal melting, the patient became a candidate for tectonic corneal transplant. As a last option, topical orthokine treatment was prescribed for this patient which had a dramatic improvement in the clinical course with the control of inflammation. In this study, a new method of orthokine therapy was performed for a severe corneal ulcer and recovery was clearly evident in the patient follow-up. This is the first case report of treatment of a corneal wound infection with this method of orthokine therapy. It is suggested for consideration as a new treatment for such infectious disease.


Corneal Injuries , Corneal Ulcer , Photorefractive Keratectomy , Refractive Surgical Procedures , Male , Humans , Adult , Corneal Ulcer/drug therapy , Corneal Ulcer/surgery , Photorefractive Keratectomy/methods , Cornea/surgery , Refraction, Ocular
11.
Infect Dis Poverty ; 12(1): 57, 2023 May 25.
Article En | MEDLINE | ID: mdl-37231463

BACKGROUND: Tuberculosis is a bacterial infectious disease, which affects different parts of a human body, mainly lungs and can lead to the patient's death. The aim of this study is to investigate the global prevalence of drug-resistant tuberculosis using a systematic review and meta-analysis. METHODS: In this study, the PubMed, Scopus, Web of Science, Embase, ScienceDirect and Google Scholar repositories were systematically searched to find studies reporting the global prevalence of drug-resistant tuberculosis. The search did not entail a lower time limit, and articles published up until August 2022 were considered. Random effects model was used to perform the analysis. The heterogeneity of the studies was examined with the I2 test. Data analysis was conducted within the Comprehensive Meta-Analysis software. RESULTS: In the review of 148 studies with a sample size of 318,430 people, the I2 index showed high heterogeneity (I2 = 99.6), and accordingly random effects method was used to analyze the results. Publication bias was also examined using the Begg and Mazumdar correlation test which indicated the existence of publication bias in the studies (P = 0.008). According to our meta-analysis, the global pooled prevalence of multi-drug resistant TB is 11.6% (95% CI: 9.1-14.5%). CONCLUSIONS: The global prevalence of drug-resistant tuberculosis was found to be very high, thus health authorities should consider ways to control and manage the disease to prevent a wider spread of tuberculosis and potentially subsequent deaths.


Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Prevalence , Tuberculosis, Multidrug-Resistant/epidemiology
12.
Cancer Rep (Hoboken) ; 6(5): e1809, 2023 05.
Article En | MEDLINE | ID: mdl-37092500

BACKGROUND: Cancer stem cells (CSCs), subpopulations of cancer cells, are responsible for tumor progression, metastasis, and relapse. Changes in amino acid metabolism are linked to breast cancer recurrence and metastasis. AIMS: This study aimed to evaluate the changes in the amino acid profile in MCF-7 and MDA-MB-231 cells during spheroid formation to discover the specific metabolic properties in CSCs. METHODS: MCF-7 and MDA-MB-231 breast cancer cells were cultured as spheroids and evaluated to characterize their CSC properties. The characteristics of CSC were evaluated by examining the expression of CSC markers and conducting drug resistance assays. In addition, amino acid profile change during the enrichment of breast cancer stem cells in the spheroids was investigated by high-performance liquid chromatography (HPLC). RESULTS: The results indicated that out of 20 different amino acids analyzed, 19 of them decreased during the spheroid formation process. Alanine, lysine, phenylalanine, threonine, and glycine showed significant reductions in the conditioned media of both cell lines in the spheroid form compared to the monolayer cells. Only one of the amino acids increased in MCF-7 and MDA-MB-231 spheroids (histidine and serine, respectively). CONCLUSION: Our results suggest that certain amino acids identified in this study can be used for a better understanding of the molecular mechanisms associated with breast cancer stem cell formation.


Amino Acids , Neoplastic Stem Cells , MCF-7 Cells , MDA-MB-231 Cells , Humans , Neoplastic Stem Cells/chemistry , Spheroids, Cellular , Amino Acids/analysis , Chromatography, High Pressure Liquid , Drug Resistance, Neoplasm
14.
Heliyon ; 9(4): e15165, 2023 Apr.
Article En | MEDLINE | ID: mdl-37095978

Introduction: Cancer is among the leading causes of death worldwide and affects a considerable number of individuals. Chemotherapy is one the most common treatment for this condition and hair loss is among one of the most prevalent side effects. In this study, we report successful treatment of a patient suffering from persistent chemotherapy-induced alopecia (PCIA) with extracellular enriched vesicles (EVs) derived from human placental mesenchymal stromal cells (MSCs). Case presentation: The patient was a 36-year-old woman with a history of invasive ductal carcinoma, underwent six courses of chemotherapy with paclitaxel and adriamycin. Following this treatment and for almost 18 months, she, unfortunately, had no regrowth of hair except some light vellus hairs on the scalp. She then received MSC-derived EVs with scalp injection (subcutaneous) every 4 weeks for 3 continuous months at which point she presented complete regrowth of terminal hair on her scalp. Conclusion: This report demonstrates that MSC-derived EVs could be a possible treatment for permanent chemotherapy-induced alopecia; however, further studies and trials are necessary.

15.
Mol Biol Rep ; 50(5): 4491-4503, 2023 May.
Article En | MEDLINE | ID: mdl-37024746

BACKGROUND: Current angiogenesis inhibitors target cellular vascularization processes, including proliferation, migration, and tube formation. In this study, we investigated the impact of Urtica dioica agglutinin (UDA) on the cellular vascularization process. METHODS AND RESULTS: Various concentrations of UDA were applied to normal (HUVEC, MCF-10 A, and HDF from humans, and L-929 from mice) and cancer (A431 and U87 from humans, and 4T1 from mice) cell lines at different times. The MTT, cell migration assay, differentiation of endothelial cells, expression of VEGF-A/VEGF-R2, and integrin α2 were evaluated. The MTT results demonstrated that UDA was non-toxic to normal cells while inhibiting the growth of neoplastic cells. The migratory capacity of HUVECs and U87 glioblastoma cells was inhibited by UDA in the wound repair model. This lectin inhibited HUVEC-induced vessel sprouting in the collagen-cytodex matrix. In addition, UDA treatment reduced VEGF-integrin cross-talk in HUVECs, confirming the anti-angiogenic activity of this molecule. CONCLUSIONS: Based on our findings, UDA may have an effect on cancer cell proliferation and vascularization events while causing minimal toxicity to normal cells via binding glyco-conjugates containing GlcNAc/man oligomers like EGFR. This is a blue clue for the angiogenesis-related therapeutic importance of UDA.


Endothelial Cells , Vascular Endothelial Growth Factor A , Male , Mice , Humans , Animals , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Lectins/metabolism , Cell Proliferation , Carbohydrates , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/metabolism , Cell Movement , Human Umbilical Vein Endothelial Cells/metabolism
16.
Indian J Surg Oncol ; 14(1): 60-68, 2023 Mar.
Article En | MEDLINE | ID: mdl-36891435

Glioma is the most common type of primary brain tumour which accounts for about 30% of all brain and central nervous system tumours, and approximately 70% of adult malignant brain tumours. Numerous studies have been performed to assess the relationship between ERCC2 rs13181 polymorphism and the risk of glioma development, yet these findings of these studies are often inconsistent and contradictory. Therefore, the aim of this study is to conduct a systematic review and meta-analysis to assess the role of ERCC2 rs13181 in glioma developing. In this work, we have conducted a systematic review and meta-analysis. In order to collect the results of relevant studies on the association of ERCC2 rs13181 gene polymorphism with glioma, we initially searched the Scopus, Embase, Web of Science (WoS), PubMed, and ScienceDirect databases, without a lower time limit, and until June 2020. In order to analyse the eligible studies, the random effects model was used and the heterogeneity of the studies was investigated with the I 2 index. Data analysis was performed within the Comprehensive Meta-Analysis software (version 2). The total number of studies that focused on patients with glioma was 10. The odds ratio of GG vs TT genotype in patients with glioma based on meta-analysis was 1.08 (0.85-1.37: 95% confidence interval), which indicates the increasing effect of GG vs TT genotype by 0.08. The odds ratio of GG + TG vs TT genotype in patients with glioma was 1.22 (1.38-1.7: 95% confidence interval) based on meta-analysis, which indicates the increasing effect of GG + TG vs TT genotype as 0.22. The odds ratio of TG vs TT genotype in patients with glioma was 1.2 (0.38-1.4: 95% confidence interval), which shows the increasing effect of TG vs TT genotype by 0.2. The odds ratio of G vs T genotype in patients with glioma based on the meta-analysis was 1.15 (1.26-1.4: 95% confidence interval), which indicates the increasing effect of G vs T genotype by 0.15. The odds ratio of GG vs TG + TT genotype in patients with glioma based on meta-analysis was 1.22 (1.33-1.45: 95% confidence interval), which indicates the increasing effect of GG vs TG + TT genotype by 0.22. The results of this systematic review and meta-analysis show that ERCC2 rs13181 polymorphism and its genotypes are an important risk factor for genetic susceptibility to glioma tumour.

17.
Biomed Pharmacother ; 161: 114496, 2023 May.
Article En | MEDLINE | ID: mdl-36948136

Tumor metabolism has provided researchers with a promising window to cancer therapy. The metabolic pathways adopted by cancer cells are different from those of normal cells. Thus, metabolism can be considered a linchpin in targeted cancer therapy. Glycolysis, pentose phosphate pathway, and mitochondria represent three critical metabolic spots with important roles in cancer cell survival and proliferation. In the present study, we aimed to target these pathways using three different inhibitors: 2-deoxyglucose, 6-aminonicotinamide, and doxycycline, separately and in combination. Accordingly, cell viability, lactate production, cell cycle profile, apoptotic profile, and expression of surface and molecular markers of MCF-7 and MDA-MB-231 breast cancer cell lines were investigated under adherent and sphere conditions. Our results from our set conditions indicated various inhibitory effects of these compounds on the breast cancer cell lines. Based on this all-around attack, the combination of drugs demonstrated the most effective inhibitory action compared to separate usage. This study suggests the combined application of these drugs in future investigations and more experimental settings in order to introduce this therapeutic strategy as an efficient anti-cancer treatment.


Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Cell Line, Tumor , Glycolysis , Metabolic Networks and Pathways , Neoplastic Stem Cells/metabolism , Cell Proliferation
18.
Metabolites ; 13(3)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36984763

Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.

19.
Cancer Med ; 12(10): 11542-11569, 2023 05.
Article En | MEDLINE | ID: mdl-36760166

OBJECTIVE: Autophagy is an intracellular degradation pathway conserved in all eukaryotes from yeast to humans. This process plays a quality-control role by destroying harmful cellular components under normal conditions, maintaining cell survival, and establishing cellular adaptation under stressful conditions. Hence, there are various studies indicating dysfunctional autophagy as a factor involved in the development and progression of various human diseases, including cancer. In addition, the importance of autophagy in the development of cancer has been highlighted by paradoxical roles, as a cytoprotective and cytotoxic mechanism. Despite extensive research in the field of cancer, there are many questions and challenges about the roles and effects suggested for autophagy in cancer treatment. The aim of this study was to provide an overview of the paradoxical roles of autophagy in different tumors and related cancer treatment options. METHODS: In this study, to find articles, a search was made in PubMed and Google scholar databases with the keywords Autophagy, Autophagy in Cancer Management, and Drug Design. RESULTS: According to the investigation, some studies suggest that several advanced cancers are dependent on autophagy for cell survival, so when cancer cells are exposed to therapy, autophagy is induced and suppresses the anti-cancer effects of therapeutic agents and also results in cell resistance. However, enhanced autophagy from using anti-cancer drugs causes autophagy-mediated cell death in several cancers. Because autophagy also plays roles in both tumor suppression and promotion further research is needed to determine the precise mechanism of this process in cancer treatment. CONCLUSION: We concluded in this article, autophagy manipulation may either promote or hinder the growth and development of cancer according to the origin of the cancer cells, the type of cancer, and the behavior of the cancer cells exposed to treatment. Thus, before starting treatment it is necessary to determine the basal levels of autophagy in various cancers.


Antineoplastic Agents , Autophagic Cell Death , Neoplasms , Humans , Neoplasms/therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy , Cell Survival
20.
Eur J Med Res ; 28(1): 39, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36670466

BACKGROUND: Primary central nervous system (CNS) tumors are a heterogeneous group of neoplasms, including benign and malignant tumors. Since there are many heterogeneities in the prevalence reported in previous studies on this type of tumor, this study was performed to determine the overall prevalence of different primary CNS tumors. METHOD: The study was conducted as a systematic review and meta-analysis by searching international databases, including PubMed, Scopus, Science Direct, Web of science, and the Google Scholar search engine until August 2020. After transferring the studies to information management software (EndNote) and eliminating duplicate studies, the remaining studies were reviewed based on inclusion and exclusion criteria according to three stages of primary and secondary evaluation and qualitative evaluation. Comprehensive Meta-Analysis software, Begg, Mazumdar, and I2 tests were used for data analysis, publication bias analysis, and heterogeneity analysis, respectively. RESULTS: After performing the systematic review steps, 80 studies were included for final analysis. Based on 8 studies, the prevalence of brain tumors was 70.9%. Also, studies on 7 other studies showed that the prevalence of spinal tumors was 12.2%. A review of 14 studies showed that the prevalence of neuroepithelial tumors was 34.7%. The analysis of 27 studies reported a prevalence of glioma tumors of 42.8%. Analyses performed on other studies showed that the prevalence of pituitary adenomas was 12.2%, embryonal tumors 3.1%, ependymal tumors 3.2%, meningiomas 24.1%, glial tumors 0.8%, astrocytic 20.3%, oligodendroglial 3.9%, glioblastoma 17.7%, schwannoma 6.7%, medulloblastoma 7.7% and Polycystic astrocytomas 3.8%. CONCLUSION: As a result, it can be stated that brain tumors are the most common type of primary CNS tumors. It was also observed that tumors involving neuroepithelial cells are more common in patients than other types of tumors.


Brain Neoplasms , Central Nervous System Neoplasms , Glioblastoma , Humans , Prevalence , Central Nervous System Neoplasms/epidemiology , Central Nervous System Neoplasms/pathology , Brain Neoplasms/pathology
...