Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 116
1.
Commun Biol ; 7(1): 670, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822061

Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined. Here we show that early postnatal stress in mice shifts the fecal microbial composition (binary Jaccard index) throughout life, including abundance of eight amplicon sequencing variants (ASVs). Further effects on fecal microbial composition, structure (weighted Jaccard index), and abundance of 16 ASVs are detected in the progeny across two generations. These effects are not accompanied by changes in bacterial metabolites in any generation. These results suggest that changes in the fecal microbial community induced by early life traumatic stress can be perpetuated from exposed parent to the offspring.


Feces , Gastrointestinal Microbiome , Stress, Psychological , Animals , Feces/microbiology , Mice , Stress, Psychological/microbiology , Female , Male , Mice, Inbred C57BL , Bacteria/genetics , Bacteria/classification
2.
Article En | MEDLINE | ID: mdl-38613677

Over 50% of children with a parent with severe mental illness will develop mental illness by early adulthood. However, intergenerational transmission of risk for mental illness in one's children is insufficiently considered in clinical practice, nor is it sufficiently utilised into diagnostics and care for children of ill parents. This leads to delays in diagnosing young offspring and missed opportunities for protective actions and resilience strengthening. Prior twin, family, and adoption studies suggest that the aetiology of mental illness is governed by a complex interplay of genetic and environmental factors, potentially mediated by changes in epigenetic programming and brain development. However, how these factors ultimately materialise into mental disorders remains unclear. Here, we present the FAMILY consortium, an interdisciplinary, multimodal (e.g., (epi)genetics, neuroimaging, environment, behaviour), multilevel (e.g., individual-level, family-level), and multisite study funded by a European Union Horizon-Staying-Healthy-2021 grant. FAMILY focuses on understanding and prediction of intergenerational transmission of mental illness, using genetically informed causal inference, multimodal normative prediction, and animal modelling. Moreover, FAMILY applies methods from social sciences to map social and ethical consequences of risk prediction to prepare clinical practice for future implementation. FAMILY aims to deliver: (i) new discoveries clarifying the aetiology of mental illness and the process of resilience, thereby providing new targets for prevention and intervention studies; (ii) a risk prediction model within a normative modelling framework to predict who is at risk for developing mental illness; and (iii) insight into social and ethical issues related to risk prediction to inform clinical guidelines.

3.
Environ Epigenet ; 10(1): dvae002, 2024.
Article En | MEDLINE | ID: mdl-38496250

The possibility that acquired traits can be transmitted across generations has been the subject of intense research in the past decades. This biological process is of major interest to many scientists and has profound implications for biology and society but has complex mechanisms and is therefore challenging to study. Because it involves factors independent from the DNA sequence, this form of heredity is classically referred to as epigenetic inheritance. Many studies have examined how life experiences and various environmental factors can cause phenotypes that are heritable and be manifested in subsequent generations. Recognizing the major importance and complexity of this research, the fourth edition of the Epigenetic Inheritance Symposium Zürich brought together experts from diverse disciplines to address current questions in the field of epigenetic inheritance and present recent findings. The symposium had sessions dedicated to epidemiological evidence and animal models, transmission mechanisms, methodologies and the far-reaching impact on society and evolution. This report summarizes the talks of speakers and describes additional activities offered during the symposium including poster sessions and an art competition on the topic of epigenetic inheritance.

4.
Lab Anim (NY) ; 53(1): 18-22, 2024 Jan.
Article En | MEDLINE | ID: mdl-38151528

Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.


Animal Experimentation , Behavior, Animal , Animals , Mice , Male , Mice, Inbred C57BL , Research Design
5.
Curr Opin Neurobiol ; 84: 102832, 2024 Feb.
Article En | MEDLINE | ID: mdl-38141414

Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.


DNA Methylation , Epigenome , Epigenesis, Genetic , Brain , Genome
6.
J Law Biosci ; 10(2): lsad034, 2023.
Article En | MEDLINE | ID: mdl-38098975

Epigenetic research has brought several important technological achievements, including identifying epigenetic clocks and signatures, and developing epigenetic editing. The potential military applications of such technologies we discuss are stratifying soldiers' health, exposure to trauma using epigenetic testing, information about biological clocks, confirming child soldiers' minor status using epigenetic clocks, and inducing epigenetic modifications in soldiers. These uses could become a reality. This article presents a comprehensive literature review, and analysis by interdisciplinary experts of the scientific, legal, ethical, and societal issues surrounding epigenetics and the military. Notwithstanding the potential benefit from these applications, our findings indicate that the current lack of scientific validation for epigenetic technologies suggests a careful scientific review and the establishment of a robust governance framework before consideration for use in the military. In this article, we highlight general concerns about the application of epigenetic technologies in the military context, especially discrimination and data privacy issues if soldiers are used as research subjects. We also highlight the potential of epigenetic clocks to support child soldiers' rights and ethical questions about using epigenetic engineering for soldiers' enhancement and conclude with considerations for an ethical framework for epigenetic applications in the military, defense, and security contexts.

7.
Cell Genom ; 3(5): 100303, 2023 May 10.
Article En | MEDLINE | ID: mdl-37228754

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.

8.
Transl Psychiatry ; 13(1): 122, 2023 04 11.
Article En | MEDLINE | ID: mdl-37041131

Chromatin is the physical substrate of the genome that carries the DNA sequence and ensures its proper functions and regulation in the cell nucleus. While a lot is known about the dynamics of chromatin during programmed cellular processes such as development, the role of chromatin in experience-dependent functions remains not well defined. Accumulating evidence suggests that in brain cells, environmental stimuli can trigger long-lasting changes in chromatin structure and tri-dimensional (3D) organization that can influence future transcriptional programs. This review describes recent findings suggesting that chromatin plays an important role in cellular memory, particularly in the maintenance of traces of prior activity in the brain. Inspired by findings in immune and epithelial cells, we discuss the underlying mechanisms and the implications for experience-dependent transcriptional regulation in health and disease. We conclude by presenting a holistic view of chromatin as potential molecular substrate for the integration and assimilation of environmental information that may constitute a conceptual basis for future research.


Chromatin , Chromosomes , Cell Nucleus , Genome , Brain
9.
Andrology ; 11(5): 849-859, 2023 07.
Article En | MEDLINE | ID: mdl-36651593

Sertoli cells are somatic cells that are in close contact with germ cells in the mammalian testes. They have multiple functions and fulfill key roles for the development and proper maturation of spermatogenic cells into functional spermatozoa. One of their most important properties is to release trophic factors and supply nutrients to germ cells. But they are also involved in the regulation of the immune system in testis, and provide an immunologically privileged environment for developing germ cells. Because they are so essential for reproductive cells, their alterations can have detrimental consequences for fertility. Many environmental factors and exposures such as high caloric diet, toxins, and pollutants are thought to compromise Sertoli cells physiology. This review describes the discovery of Sertoli cells and the methods used for their study, summarizes their major properties and functions, and describes their dysfunctions in pathologies, particularly associated with environmental stressors.


Sertoli Cells , Testis , Male , Animals , Sertoli Cells/physiology , Testis/physiology , Spermatozoa , Germ Cells , Fertility , Spermatogenesis/physiology , Mammals
10.
Environ Epigenet ; 8(1): dvac024, 2022.
Article En | MEDLINE | ID: mdl-36518875

Life experiences and environmental conditions in childhood can change the physiology and behaviour of exposed individuals and, in some cases, of their offspring. In rodent models, stress/trauma, poor diet, and endocrine disruptors in a parent have been shown to cause phenotypes in the direct progeny, suggesting intergenerational inheritance. A few models also examined transmission to further offspring and suggested transgenerational inheritance, but such multigenerational inheritance is not well characterized. Our previous work on a mouse model of early postnatal stress showed that behaviour and metabolism are altered in the offspring of exposed males up to the 4th generation in the patriline and up to the 2nd generation in the matriline. The present study examined if symptoms can be transmitted beyond the 4th generation in the patriline. Analyses of the 5th and 6th generations of mice revealed that altered risk-taking and glucose regulation caused by postnatal stress are still manifested in the 5th generation but are attenuated in the 6th generation. Some of the symptoms are expressed in both males and females, but some are sex-dependent and sometimes opposite. These results indicate that postnatal trauma can affect behaviour and metabolism over many generations, suggesting epigenetic mechanisms of transmission.

11.
Front Genet ; 13: 1024805, 2022.
Article En | MEDLINE | ID: mdl-36353105

Sertoli cells are somatic cells in testis essential for spermatogenesis, that support the development, maturation, and differentiation of germ cells. Sertoli cells are metabolically highly active and physiologically regulated by external signals, particularly factors in the blood stream. In disease conditions, circulating pathological signals may affect Sertoli cells and consequentially, alter germ cells and fertility. While the effects of stress on reproductive cells have been well studied, how Sertoli cells respond to stress remains poorly characterized. We used a mouse model of early postnatal stress to assess the effects of stress on Sertoli cells. We developed an improved strategy based on intracellular stainings and obtained enriched preparations of Sertoli cells from exposed males. We show that adult Sertoli cells have impaired electron transport chain (ETC) pathways and that several components of ETC complexes particularly complex I, III, and IV are persistently affected. We identify serum as potential mediator of the effects of stress on Sertoli cells by showing that it can recapitulate ETC alterations in primary cells. These results highlight Sertoli cells as cellular targets of stress in early life that can keep a trace of exposure until adulthood.

12.
Front Cell Dev Biol ; 10: 854317, 2022.
Article En | MEDLINE | ID: mdl-35386194

Recent advances in methods for single-cell analyses and barcoding strategies have led to considerable progress in research. The development of multiplexed assays offers the possibility to conduct parallel analyses of multiple factors and processes for comprehensive characterization of cellular and molecular states in health and disease. These technologies have expanded extremely rapidly in the past years and constantly evolve and provide better specificity, precision and resolution. This review summarizes recent progress in single-cell multiomics approaches, and focuses, in particular, on the most innovative techniques that integrate genome, epigenome and transcriptome profiling. It describes the methodologies, discusses their advantages and limitations, and explains how they have been applied to studies on cell heterogeneity and differentiation, and epigenetic reprogramming.

13.
Environ Epigenet ; 8(1): dvac021, 2022.
Article En | MEDLINE | ID: mdl-36589550

Epigenetic inheritance has emerged as a new research discipline that aims to study the mechanisms underlying the transmission of acquired traits across generations. Such transmission is well established in plants and invertebrates but remains not well characterized and understood in mammals. Important questions are how life experiences and environmental factors induce phenotypic changes that are passed to the offspring of exposed individuals, sometimes across several successive generations, what is the contribution of germ cells and what are the consequences for health and disease. These questions were recently discussed at the symposium Epigenetic Inheritance: Impact for Biology and Society organized every 2 years in Zürich, Switzerland. This review provides a summary of the research presented during the symposium and discusses current important questions, perspectives and challenges for the field in the future.

14.
Neurosci Biobehav Rev ; 132: 1049-1066, 2022 01.
Article En | MEDLINE | ID: mdl-34742726

Childhood trauma (CT) can have persistent effects on the brain and is one of the major risk factors for neuropsychiatric diseases in adulthood. Recent advances in the field of epigenetics suggest that epigenetic factors such as DNA methylation and histone modifications, as well as regulatory processes involving non-coding RNA are associated with the long-term sequelae of CT. This narrative review summarizes current knowledge on the epigenetic basis of CT and describes studies in animal models and human subjects examining how the epigenome and transcriptome are modified by CT in the brain. It discusses psychological and pharmacological interventions that can counteract epigenetic changes induced by CT and the need to establish longitudinal assessment after CT for developing more effective diagnostics and treatment strategies based on epigenetic targets.


Adverse Childhood Experiences , Adult , Animals , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Humans , Protein Processing, Post-Translational
15.
Biol Reprod ; 105(3): 593-602, 2021 09 14.
Article En | MEDLINE | ID: mdl-34426825

Sperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The small RNA composition of sperm could be changed during its final stage of maturation in the epididymis by extracellular vesicles (EVs) released by epididymal cells. We studied the effect of exposure to stress in early postnatal life on the transcriptome of epididymal EVs using a mouse model of transgenerational transmission. We found that the small RNA signature of epididymal EVs, particularly miRNAs, is altered in adult males exposed to postnatal stress. In some cases, these miRNA changes correlate with differences in the expression of their target genes in sperm and zygotes generated from that sperm. These results suggest that stressful experiences in early life can have persistent biological effects on the male reproductive tract that may in part be responsible for the transmission of the effects of exposure to the offspring.


Adverse Childhood Experiences , Epididymis/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL
16.
Front Cell Dev Biol ; 9: 648274, 2021.
Article En | MEDLINE | ID: mdl-33968930

The extraction of high-quality ribonucleic acid (RNA) from tissues and cells is a key step in many biological assays. Guanidinium thiocyanate-phenol-chloroform (AGPC) is a widely used and efficient method to obtain pure RNA from most tissues and cells. However, it is not efficient with some cells like sperm cells because they are resistant to chaotropic lysis solutions containing guanidinium thiocyanate such as Buffer RLT+ and Trizol. Here, we show that disulfide bonds are responsible for the chemical resistance of sperm cells to RNA extraction reagents. We show that while ß-mercaptoethanol (ßME) can increase sperm lysis in Buffer RLT+, it has no effect in Trizol and leaves sperm cells intact. We measured the reduction of disulfide bonds in 2,2'-dithiodipyridine (DTDP) and observed that ßME has a pH-dependent activity in chaotropic solutions, suggesting that pH is a limiting factor. We identified tris(2-carboxyethyl)phosphine (TCEP) as an efficient lysis enhancer of AGPC solutions that can retain reducing activity even at acidic pH. Trizol supplemented with TCEP allows the complete and rapid lysis of sperm cells, increasing RNA yield by 100-fold and resulting in RNA with optimal quality for reverse transcription and polymerase chain reaction. Our findings highlight the importance of efficient cell lysis and extraction of various macromolecules for bulk and single-cell assays, and can be applied to other lysis-resistant cells and vesicles, thereby optimizing the amount of required starting material and animals.

18.
PLoS One ; 16(1): e0245475, 2021.
Article En | MEDLINE | ID: mdl-33476328

INTRODUCTION: Depression, cardiovascular diseases and diabetes are among the major non-communicable diseases, leading to significant disability and mortality worldwide. These diseases may share environmental and genetic determinants associated with multimorbid patterns. Stressful early-life events are among the primary factors associated with the development of mental and physical diseases. However, possible causative mechanisms linking early life stress (ELS) with psycho-cardio-metabolic (PCM) multi-morbidity are not well understood. This prevents a full understanding of causal pathways towards the shared risk of these diseases and the development of coordinated preventive and therapeutic interventions. METHODS AND ANALYSIS: This paper describes the study protocol for EarlyCause, a large-scale and inter-disciplinary research project funded by the European Union's Horizon 2020 research and innovation programme. The project takes advantage of human longitudinal birth cohort data, animal studies and cellular models to test the hypothesis of shared mechanisms and molecular pathways by which ELS shapes an individual's physical and mental health in adulthood. The study will research in detail how ELS converts into biological signals embedded simultaneously or sequentially in the brain, the cardiovascular and metabolic systems. The research will mainly focus on four biological processes including possible alterations of the epigenome, neuroendocrine system, inflammatome, and the gut microbiome. Life-course models will integrate the role of modifying factors as sex, socioeconomics, and lifestyle with the goal to better identify groups at risk as well as inform promising strategies to reverse the possible mechanisms and/or reduce the impact of ELS on multi-morbidity development in high-risk individuals. These strategies will help better manage the impact of multi-morbidity on human health and the associated risk.


Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Depression/epidemiology , Depression/etiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/etiology , Stress, Psychological/complications , Adult , Adverse Childhood Experiences/psychology , Biomarkers/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/psychology , Child , Depression/metabolism , Depression/psychology , Diabetes Mellitus/metabolism , Diabetes Mellitus/psychology , Environment , Humans , Longitudinal Studies , Morbidity , Risk Factors
19.
Trends Genet ; 37(4): 373-388, 2021 04.
Article En | MEDLINE | ID: mdl-33189388

The possibility that parental life experiences and environmental exposures influence mental and physical health across generations is an important concept in biology and medicine. Evidence from animal models has established the existence of a non-genetic mode of inheritance. This form of heredity involves transmission of the effects of parental exposure to the offspring through epigenetic changes in the germline. Studying the mechanisms of epigenetic inheritance in humans is challenging because it is difficult to obtain multigeneration cohorts, to collect reproductive cells in exposed parents, and to exclude psychosocial and cultural confounders. Nonetheless, epidemiological studies in humans exposed to famine, stress/trauma, or toxicants have provided evidence that parental exposure can impact the health of descendants, in some cases, across several generations. A few studies have also started to reveal epigenetic changes in the periphery and sperm after certain exposures. This article reviews these studies and evaluates the current evidence for the potential contribution of epigenetic factors to heredity in humans. The challenges and limitations of this fundamental biological process, its implications, and its societal relevance are also discussed.


DNA Methylation/genetics , Environmental Exposure/adverse effects , Epigenesis, Genetic/genetics , Female , Genomic Imprinting/genetics , Humans , Male , Maternal Exposure , Paternal Exposure
20.
Front Genet ; 11: 589621, 2020.
Article En | MEDLINE | ID: mdl-33193727

Prolonged periods of social isolation can have detrimental effects on the physiology and behavior of exposed individuals in humans and animal models. This involves complex molecular mechanisms across tissues in the body which remain partly identified. This review discusses the biology of social isolation and describes the acute and lasting effects of prolonged periods of social isolation with a focus on the molecular events leading to behavioral alterations. We highlight the role of epigenetic mechanisms and non-coding RNA in the control of gene expression as a response to social isolation, and the consequences for behavior. Considering the use of strict quarantine during epidemics, like currently with COVID-19, we provide a cautionary tale on the indiscriminate implementation of such form of social isolation and its potential damaging and lasting effects in mental health.

...